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Abstract 

A novel transverse oscillatory behavior of a spatial soliton is presented. The controlling parameter of the spatial 
oscillation period is constituted by the intensity of the input beam. The scheme is based on an interesting property of a 
soliton in a waveguide with transverse Gaussian refractive index profile. 

1. Introduction 

Optical solitons mostly arise as self-trapped transverse 
spatial profiles in nonlinear planar waveguides or as tem- 
poral pulses in fibers [l-6]. The interesting property of 
these propagating wave packets is not only their space-in- 
variant or time-invariant profile, but also their robustness 
to external perturbations. Spatial and temporal solitons 
have been observed in different experiments, opening the 
way to realize, thanks to their interesting properties [7], 
all-optical devices as arithmetic units [8,9], logical opera- 
tion [12,13], switching [14-171 and modulation [7,18-211. 
In this paper we want to study the propagation of a soliton 
beam in a waveguide with a transverse Gaussian refractive 
index profile, with the initial position of the maximum 
intensity of the soliton shifted with respect to the position 
of the maximum of the index profile. In this situation the 
beam is attracted towards the center of the index profile, 
acquiring a certain velocity that allows it to pass this point 
and to continue to move forward to the other side of the 
index profile, decreasing its velocity. 

2. Soliton in a Gaussian refractive index profile 

Soliton propagation through nonlinear interfaces, that is 
under the condition of strong perturbation, has already 
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been studied [lo,1 11. The situation is very similar to the 
trajectory of a mass in a gravitational potential hole. 

It is possible to show that in a plane wave geometry, 
where the transverse field confinement is given by the 
refractive index variation, and the refractive index varia- 
tion between the waveguide and the surrounding media is 
larger with respect to the refractive index change induced 
by the nonlinearity, the e.m. propagation is described by 
the following nonlinear SchrGdinger equation (NLSE) in 
the X-Z plane: 

2ipf$ + $ + 2pzzIA12A ~0, 

Z being the longitudinal propagation coordinate, X the 
transversal coordinate, A the amplitude of the field and p 
the wavevector of the guided mode. If a transverse index 
profile An,(X) is present, Eq. (1) changes into: 

i?A a2A n2 

2iB~+ilXZ+2P2n,(l+An,(x)) 
I AI~A = 0, (2) 

provided that IAn,,( -=K 1, so that the index profile can 
be regarded as a light perturbation of the NLSE. 

It is convenient, for simplicity of calculation, to nor- 
malize Eq. (11, 

aQ a2Q 
2iaz+a,2+ l+A~,(x)lQ~2Q=0, 

where /3X=x, /3Z = z, d=A = Q. 
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We assume that the refractive index profile An,(x) is 
of the form An, exp(-bx*), where b is a constant that 
controls the width of the profile. The index profile has 
been chosen as Gaussian just for simplicity. In fact the 
beam oscillations take place even for different profiles 
because of the particular behavior of the phenomenon we 
are studying. Further, this kind of profile approximates the 
index profile obtained in ion exchange waveguides. 

Eq. (3) can be rearranged as 

2iz + $ + 2lQi’Q = VQ, 

where V is the perturbation potential that is given by 

(5) 

The perturbation potential is responsible for the 
transversal trajectory of the soliton beam. It depends on the 
index profile and on the intensity profile of the beam: this 
means that different intensity profiles in the same index 
profile are subject to different forces and therefore they 
move according to different trajectories. 

We assume that the electromagnetic field moves collec- 
tively: that is its local intensity QQ * is a function only of 
x - Z(z). We can thus use the equivalent-particle descrip- 
tion as in Ref. [lo]. 

We recall some important general parameters: the exact 
expression for the rate of change of the normalized dimen- 
sionless power: 

P= / cc QQ* dx, 
--m 

the average position: 

/ 

m 
xzp-’ xQQ* dx, 

--co 

the average velocity: 

of the normalized field Q(x, z). 
In our case it is possible to demonstrate that 

dp,‘dz = 0, 

dZ/dz= v, 

m av 
a=du/dz= -zp-’ j_-a,QQ*d". 

(6) 

(7) 

(8) 

Pa) 

Pb) 

PC) 

Expressions (9a)-(9c) are exact expressions. 
It is evident that if we are able to find the analytical 

expression of Eq. (SC), we can completely describe the 
behavior of a soliton beam in a refractive index profile. 

In our case we suppose that the input wave-packet is a 
single soliton: 

Q(x,z)=Csech[C(x-j;_)]exp[i(ux/2+2u)], (10) 

where v = d?/dz and -u’/S + tC2 = du/dz. 
In this case the potential V expressed by Eq. (5) 

becomes 

v=2 
An,exp(-bx*) 

1 +Alz,exp(-bx*) 
[Csech(C(x-?))I*. (11) 

Substituting Eq. (1 I) in Eq. (SC) it is possible to obtain 
the exact expression of transversal acceleration. Because of 
the quite complex structure of the potential represented by 
Eq. (ll), it is very difficult to solve in a closed form, the 
integral (SC), but it is possible, thanks to some approxima- 
tions, to calculate the analytical expression of the accelera- 
tion. 

Since An, < 1, it is possible to neglect it in the 
denominator of Eq. (5) that can be approximated by 

V(x) ~2An,exp(-bx*)[Csech(C(x-:))]a. (12) 

We restrict our analysis to the situation of a wide index 
profile with respect to the beam width, that means b +c C. 
In this situation it is possible to expand the exponential 
term of Eq. (12) in power series about the point x = E to 
the first order, obtaining 

V(x)= [2Anoexp(-b?2)-4bAn,x,exp(-bS12) 

X(x-Z)][Csech(C(x-X))]2. (13) 

Substituting Eq. (13) into Eq. (SC) we have 

a(?) = -2~~’ 
i 

8bAn,C3Zexp(-bZ*) 

Xj:_C[sech(C(x-.F-))Ijdr 

-4An,C3exp(-b?) 

X/~ZC[sech(C(x-Z))]4tanh(C(x-?))dx 

- 8bAn,C3E exp( - bE2) 

X/:mC(x-4)[sech(C(x-Z))]4 

Xtanh(C(x-?))dx 
1 

(14) 

calculating the integral and inserting the minus sign into 
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An, we have the acceleration as a function of the variable 
f: 

Q(X) = - $bAn,C*Zexp( -b?*), (15) 

which is always valid under the condition Ana -=x 1 and 
b -=c C. 

We can see that this acceleration is a linear function of 
An,, a square function of C, an antisymmetric function of 
!?. In Fig. 1 the optical potential (curve I), the soliton beam 
profile (curve 2) when it is positioned at the center of the 
transverse index profile, and the transversal acceleration 
(curve 3) are shown. 

The parameter b is both responsible for the amplitude 
and the position X, of the maximum of the acceleration 
that can be found solving the following equation: 

aa/&? = 0, (16) 

whose solutions are 

,,= +1/m. (17) 

In Fig. 2, different transversal acceleration profiles as a 
function of parameter b are shown. 

It is immediate to see that the transverse acceleration 
(depending on the average position X) tends to zero when 
the beam moves out of the waveguide. 

If the beam is shifted with respect to the center of the 
profile and An, has the proper sign, a force is present that 
constricts the beam to move towards the center, where it 
reaches the maximum velocity, than the force inverts its 
sign when the beam passes through it. As a result we have 
an oscillatory behavior. 

In this paper we are mainly interested in finding the 
distance that a soliton beam has to propagate along the 
z-axis to move from one side of the waveguide with an 
initial velocity equal to zero and to reach the other side of 
the waveguide with a final velocity equal to zero. Since the 

X 

Fig. 1. Optical potential profile (l), s&ton beam profile (2), 

acceleration profile (3) versus transverse coordinate for b = 0.005, 
C=l, An,=l. 
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Fig. 2. Acceleration profile versus transverse coordinate for differ- 

ent values of b and C= 1, An, = 0.1. 

transversal acceleration is a function of the variable x, it is 
convenient to consider the mean acceleration uM: 

(18) 

where w is the initial position of the beam with respect to 
the center of the index profile. In this situation the equa- 
tion that expresses the transverse distance x as a function 
of propagation coordinate z is 

E = +a,z” (19 
Since we are interested in knowing z as a function of the 
transverse path at 2 = w, we have from Eq. (19): 

+aMz2 - w = 0, 

that can be solved, excluding the non-physical solution, 
giving: 

z = SJ2 = (2w/a,)“‘, (21) 
where S, is the distance necessary to propagate to cross a 
transverse distance equal to 2w. 

Eq. (19) allows us to exactly know the point of the 
waveguide where the beam arrives with a velocity equal to 
zero, before inverting its trajectory. If we consider, for 
example, the beam to be initially positioned at the maxi- 
mum of transverse acceleration from Eq. (17) we have that 
w=xM= l/v%. S u b stituting Eq. (15) in EQ. (18) and 
solving the integral it is possible to find the analytical 
expression of aM: 

a - M_ &/~i,fi[-$bAnoiexp(-b?2)]dE 

= $/%Alz,C2(1 -exp( -i)). (22) 



196 F. Garzia et al. / Optics Communications 139 (1997) 193-198 

3. Numerical simulations of the effect 

We have simulated [I 11 Eq. (1) for different values of 
the parameters An,, C, b. 

The initial profile was 

Q,(x)=Csech[C(x-x,)], 

where xM is the shift between the center of the index 
profile and the center of the beam, that in our case 
coincided with the position of the maximum of the trans- 
verse acceleration. 

The result is that the beam oscillates inside the index 
profile without leaving it if it is initially properly posi- 
tioned on one side of the index profile with a transversal 
velocity equal to zero. For this reason we call this behavior 
“swing effect”. 

This behavior perfectly agrees with the theory. 
In Fig. 3, different upper views of the results of the 

simulation for different values of the parameters are shown. 
The oscillation period T,(C) is a function of the param- 

eter C as it was to be expected substituting Eq. (22) into 
Eq. (21): 

I2 ‘P 

b&(1 _exp( -+)) ‘-I’ (24) 

4. Numerical example 

We want now to consider a numerical situation to give 
an idea of the strength of the swing effect in a Kerr 
medium. 

We consider a beam whose transverse dimension is d,, 
where d, is the full width at half height of the beam. In 
this situation the intensity necessary to generate a soliton is 

[51 
I, = 2n,/d;n, ,B2, (25) 

where p is the wavevector of the beam, and ~za,y/~ are the 
linear and nonlinear refractive indices of the medium 
respectively. 

It is possible to demonstrate, through some algebra, that 
in a profile C sech(Cx) the parameters d, and C are linked 
by the relation: 

@!a= SIog(2+6). (26) 

Eq. (26) can be rapidly calculated solving the equation 
Csech(Cxjc) = C/2, with respect to x, that gives the x- 
position where the beam is equal to half of its maximum. 
Excluding the non-physical solution, we have the half of 
the normalized full width at half height of the beam. 
Remembering that PX = x, we obtain Eq. (26). 
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Fig. 3. (a) Numerical simulation for C = 1 and b = 0.01, An, = 0.05. (b) Numerical simulation for C = 0.75 and b = 0.01, Aa, = 0.05. (c) 
Numerical simulation for C = 0.5 and b = 0.01, An, = 0.05. (d) Numerical simulation for C = 0.25 and b = 0.01, An0 = 0.05. 
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Fig. 4. Spatial oscillation period (meter) as a function of the input 

intensity (W/m’). 

Substituting Eq. (26) into Eq. (25) and solving with 

respect to C, we obtain: 

c= (log(2 + 6)) 2 
i i 

l/2 

Ii’2 

It is now necessary to transform the condition b -=K C, 

that ensures that the index profile is wider than the beam 
profile, from normalized unities to real unities, that is to 
relate b to d,. The condition holds for example for 
b = C/10. Substituting this last condition into Eq. (26) we 
have 

(28) 

Once fixed this condition, it is possible to know imme- 
diately the width of the index profile W. In fact, if we 
consider as half of the index profile the transversal dis- 
tance that extends form the center of the profile until to the 
point where the index value is equal to l/e of the maxi- 
mum value, we have that W = P(2/b) = lOd,/[log(2 

+ ml. 
Since the oscillation period is a function of C as 

expressed in Eq. (241, substituting Eq. (27) and Eq. (28) 
into Eq. (24), and remembering that p Tz = T,, we have 

60d, 
l/2 

T,(4) = 
PAn,[log(2 + A)]‘[ I - exp( -+)I 

l/2 
I,- “2 , (29) 

that is the spatial oscillation period as a function of the 
input intensity I,. It is immediate to verify that Eq. (29) is 
expressed in meters. 

Suppose we have a Kerr material such as a Schott B270 
glass [5], whose typical optical parameters at A, = 620 nm 
are no = 1.53 and n2 = 3.4 X 1O-2o m2/W, and a spot 

size whose dimension is d, = 5 pm. In this situation the 
width of the index profile W must be chosen equal to 

about 40 km. If we choose, for example, An, = lo-“, we 
can calculate the expression that gives the oscillation 
period as a function of intensity. Substituting the numerical 
values in Eq. (29) we have 

T,( Is) = 2.21 X 105Z;“2. (30) 

In Eq. (30), Z, is expressed in W/m2 and ?“z in meter. A 
graphical representation of Eq. (30) is shown in Fig. 4. 

5. Conclusions 

A new interesting effect involving soliton propagation 
was presented. It consists of oscillatory behavior of a 
soliton when it is placed in a transverse Gaussian refrac- 
tive index profile. The spatial oscillation was demonstrated 
to be a function of the intensity of the beam. Different 
index profiles, not considered here, induce oscillations, 
even if the spatial periods depend on their shape. 
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