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ABSTRACT 
 
An all-optical cryptographic device for security applications, based on the properties of soliton beams, is presented. It is 
able to codify a given bit stream of optical pulses, changing their phase and their amplitude as a function of one or more 
encryption serial keys that merge with the data stream, generating an incomprehensible stream. 
Its great advance is represented by its capability of encrypting in real time, without slowing the data flow that can be 
transmitted with its original velocity. 
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1. INTRODUCTION 
 
The device described in this paper is capable of codifying a given bit stream of optical pulses, changing their phase and 
their amplitude as a function of one or more encryption serial keys that merge with the data stream, generating an 
incomprehensible stream. It is based on the special properties of spatial solitons that are, as well known, self-trapped 
optical beams able to propagate without any change of their spatial shape, thanks to the equilibrium, in a self-focusing 
medium, between diffraction and nonlinear refraction1. 
Their interesting properties have allowed to design a certain number of spatial optical switches which utilise the 
interaction between two bright or dark soliton beams, and the waveguide structures induced by these interactions2-6. 
Two distinct parallel solitons are generally used as initial condition for such interactions. In fact it is well known that 
when two distinct  bright spatial solitons are launched parallel to each other, the interaction force between them depends 
on their relative distance and their phase7,8. 
A variety of useful devices can be thought and designed using the properties of solitons. One of the most important 
features is their particle-like behaviour and their relative robustness to external disturbs. 
Interesting effects have been found in the study of transverse effects of soliton propagation at the interface between two 
nonlinear materials9-11 or in a material in the presence of a gaussian refractive index profile, that is in low perturbation 
regime9. 
It has been shown that it is possible to switch a soliton, in the presence of a transverse refractive index variation, 
towards a fixed path, since the index variation acts as a perturbation against which the soliton reacts as a particle, 
moving as a packet without any loss of energy. This last property makes possible to design useful all optical devices 
such as a filter13 or a high speed router14. 
The general problem of encrypting the binary data transmitted on an optical channel is very felt in the security field.  
The aim of the present work is to find a new approach to this problem, studying a device that is able to increase the 
security level of an optical channel, extending the modulation also to the phase of the output pulses. It acts as an 
amplitude/phase converter accepting two binary modulated stream of pulses as inputs and generating a unique phase 
modulated stream of pulses as output. The first stream is related to the data stream while the second stream is related to 
the serial cryptographic key. The device can be properly cascaded, adding further serial cryptographic keys, generating 
a unique stream of pulses characterized by a higher security level. The great advantage is that the device is totally 
passive, which means that is does not need extra energy to work properly. The working principle is shown in fig.1. 
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In its basic geometry  a soliton beam travels in a waveguide which, in the plane between the cladding and the substrate, 
has a distribution of refractive index which follows a triangular curve, with a modified parabolic profile. 
We start studying the general structure of the device. Then the transverse behaviour of a soliton in a triangular profile13, 
whose longitudinal profile is parabolic14, is discussed. Once the properties of motion are derived, we investigate the 
structure from the global point of view, deriving all the properties and the operative conditions, that represents the scope 
of this paper. 
 

 
Fig.1 Working principle of the device 

 
2. STRUCTURE OF THE DEVICE 

 
To simplify the development of the theory we consider only a 2 inputs -1 output device. The purpose of the device is to 
generate a phase modulated pulse according to the different combinations of amplitude of input pulses, that represent 
the data stream and the cryptographic stream.  

 
Fig.2 Structure of the device. 

 
In the following we briefly call them input 1 and input 2. This is equal to say that, in the presence of two binary inputs, 
the possible amplitude combinations are 4, and the output pulse has to assume 4 different phase values, without 
requesting auxiliary energy.  



  
 

We suppose to work with soliton beams to use their attracting or repelling properties7 and their particular behaviour 
when they propagate in a transverse refractive index profile13. The structure we want to study is shown in fig. 2. 
We also suppose that the two input pulses enter in the relative inputs of the device with the same phase. This is not a 
restriction since any phase difference can be properly compensated. 
Owed to the fact that we deal with equal streams of pulses the last condition is that the input pulses are characterised by 
the same amplitude. 
The device is composed by 4 parts: the main waveguide, the secondary waveguide, the delay branch and the drain 
waveguide. The geometry and the refractive index values of these four components strictly determine the feature of the 
device and their values will be designed as discussed in the following. 
Let us analyse the behaviour of the device in the four possible input situations. Since we deal with binary input pulses 
we consider the two values of logical zero (absence of pulse) and logical one (presence of pulse). We refer to them as 
zero and one. 
The first situation is when the two inputs are equal to zero. In this case, due to the passive nature of the device, we 
obtain a zero in the output.  
The second situation is when the first input is equal to one and the second input is equal to zero. In this case, if the 
refractive index of both the delay branch and the drain waveguide is less or equal to the refractive index of the main 
waveguide, the pulse propagates undisturbed and it reaches the output, with a phase that is equal to the propagation 
phase along the main waveguide. If the length of this waveguide is properly chosen, according to the wavelength of the 
beam, the phase of the output pulse is equal to the phase of the input pulse. In the first situation there was an absence of 
pulse and its phase value was virtually equal to zero. In this case the phase value variation has been chosen equal to zero 
but we are in the presence of a pulse. The phase variation could anyway be chosen at will, but we keep it fixed at zero 
for simplicity. The behaviour of this kind of waveguide has already been studied13. 
The third situation is when the first input is equal to zero and the second input is equal to one. In this case, since we are 
in the proper refractive index conditions of the waveguide and the delay branch is properly shifted with respect to the 
input point of the secondary wave, the second input pulse is trapped in the main waveguide and it reaches the output 
with a certain phase difference, that we define later, respect to the previous case due to the fact that it propagates, in the 
initial part, into the secondary waveguide. 
The fourth situation is when both the inputs are equal to one. In this case the two pulses meet at the converging point 
between the main waveguide and the secondary waveguide. In this case, since we are in soliton propagation condition, 
they can attract if their relative phase is included between zero and π/2 or between 3π/2 and 2π, or they can repel if their 
relative phase is included between π/2 and 3π/2. If the length of the secondary waveguide is chosen to generate a 
repulsive condition, the two solitons propagate in the main waveguide properly separated until reaching the bifurcation 
point between the main waveguide, the delay branch and the drain waveguide. At this point the two solitons detach: the 
first one enters the delay branch while the second one enters the drain waveguide.  
The first soliton propagates in the delay branch experiencing a phase variation that depends on the length of the branch 
and therefore is properly selectable and can be chosen different from the previous cases, generating the fourth phase 
condition. The second pulse, on the contrary, propagates in the drain waveguide where it reaches the proper drain 
output. 
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(INTENSITY)  

INPUT 2 
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1 0 0 0 0 - 
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1I  0 
1I  0 - 

3 0 
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2

3

2 2

πϕπ <<  
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1I  2I  1I  2,1ϕ  - 

 
Table 1 Working scheme of the device 

 
The delay branch is composed by a properly modified longitudinal parabolic waveguide, whose purpose is to accept the 
beam from the main waveguide with an angle that respects the paraxial approximation, to propagate it changing its 



  
 

direction until reaching a straight longitudinal direction and to reverse this sequence until carrying the pulse inside the 
main waveguide with a certain phase difference. The behaviour of this modified parabolic waveguide is studied later. 
The situation is summarised in table 1, where it is also pointed out the pulse that reaches the output to provide more 
details about the working principles of the device, even if we consider input pulses with the same amplitude. 
We will now define better the profile of the refractive index of the waveguides and the properties of the longitudinal 
modified parabolic waveguide that compose the delay branch. 
 
3. PROPERTIES OF A SOLITON IN A MODIFIED LONGITUDIN AL PARABOLIC WAVEGUIDE 
 
We want now to define the structure of the modified parabolic waveguide composing the delay branch to find its 
peculiar properties that allow the loop to work properly. 
We choose this kind of waveguide because it is the simplest curve that carries progressively the soliton beam from a 
propagation angle that respects the paraxial approximation until a angle that respects a parallel longitudinal propagation 
and vice versa. 
This curve could be roughly approximated with a linear curve, but the final result would be a too sharp path, since the 
soliton reaches the reversing point with a certain inclination. Further the parabolic path is the trajectory followed from a 
soliton beam that is injected into a linear transverse refractive index profile, that is the transverse profile that we are 
going to consider. 
Let us consider a soliton beam propagating in the z-direction, whose expression of the field Q at the beginning of the 
structure is: 
        ( ) ( )[ ]x-xCsech0, CxQ = ,      (1) 

where x  is the position of the centre of the beam and C is a real constant from which both the width and the amplitude 
of the field depend. The variables x and z are normalised with respect to the wavevector of the wave and therefore they 
are adimensional quantities. 
When the soliton beam is propagating in a triangular transverse index profile, whose maximum value is 0n∆  and whose 

maximum width is 2b, it is subjected to a transverse acceleration equal to 13-16: 
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We use, for our analysis, a dynamic point of view, that is to consider the step by step transverse relative position of the 
waveguide with respect to the beam using the z variable as a time parameter.  
 

 
Fig.3 Relative distance waveguide-soliton at some propagation distance z. 

 
If ( )zxG  is the position of the central part of the waveguide profile with respect to z, the longitudinal form of the 

waveguide is chosen to be a modified parabolic: 
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where 'a' is a real constant responsible for the curvature of the waveguide and 'd' is a real constant responsible for the 
position of the curve. Equation (3) can be better understood if it is expressed as a function of z, that is: 

        dadxaz G ++−= .      (4) 

It is possible to see that it is positioned in the second quadrant of the Cartesian plane, it has a vertical asymptote at 

( ) dzxG =  when daz → . It shows a gradually increasing derivative, growing from a starting angle at x=0, chosen to 

be below the maximum angle allowed from the paraxial approximation, until reaching a vertical alignment at 
( ) dzxG = , that is what we want to make the device work properly. To respect this term it is necessary to impose a 

certain condition to the 'a' and 'd' parameters, as we show later. A graphical representation of equation (4) is shown in 
fig. 4 for a=16.9 and d=1.4. 
 

 
Fig.4 Graphical representation of the modified parabolic waveguide for a=16.9, d=1.4. 

 
The local inclination of the waveguide with respect to the longitudinal axis z, can be regarded as the transverse relative 
velocity of the waveguide that appears to the beam that propagates longitudinally: 
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Using equation (2) it is possible to calculate the transverse relative velocity: 
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and the position of the beam 
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Equation (7) is valid for a propagation in the first quadrant of Cartesian plane. Since we consider, in our case, a 
propagation in the second quadrant, we must reverse the sign of the second member of the equation  considered. 
Initially the beam is positioned in the centre of the waveguide. Since the waveguide appears to move, with respect to an 
observer that follows the longitudinal direction, with a relative velocity expressed by equation (5), the soliton beam 
enters in the constant acceleration zone, where its velocity increases linearly with z. It also follows a parabolic 
trajectory, according to equation (7), until it remains in this part of the waveguide. 
After that the beam has propagated for a certain z distance, two different situations may happen: the beam leaves the 
acceleration zone without reaching the velocity of the waveguide at that z, or the beam acquires a velocity that is greater 
than or equal to the velocity of the waveguide. The first event may called ‘detach situation’, since the beam leaves the 
waveguide, while the second one may be called ‘lock-in situation’ since the beam reaches the other side of the 
waveguide where it is stopped, reversing its path and so on.  
At any value of z, as shown in fig. 3, the distance BGd  between the beam and the waveguide is: 
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A detach situation takes place when: 
         bd BG = .       (9) 

If we solve equation (9) with respect to z we can calculate, if it exists, the propagation distance where the detachment 
begins: 
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The two solutions refer to the detach situation (when the negative sign of the root is considered) or to the first cross of 
the centre of the waveguide in the lock-in situation (when the positive sign of the root is considered). Studying the 
discriminator of equation (10) it is possible to derive the value of the amplitudeDC  that divides the lock-in values from 

the detach values: 
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It is possible to see, from equation (11) that the more the curvature of the waveguide ('a' parameter) increases or the 
more the refractive index decreases and the more DC  increase. This behaviour agrees with what one could expect. 

We want now to calculate the inclination according to which a soliton, whose amplitude is smaller than the detach 
amplitude, leaves the waveguide. Since the mentioned angle is equal to the detach velocity, substituting equation (11) 
into equation (6), we have: 
        Dvtan 1−=Φ         (12a) 

and 
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Fig.5  Detach angle Φ in degrees, equal to ( )Dvatan , versus C for  a=16.9, d=1.4, b=0.25, 5

0 101 −⋅=∆n . 

 
In fig. 5 it is shown the graphical behaviour of equation (12) for a=16.9, d=1.4, b=0.25, 5

0 101 −⋅=∆n . The detach value 

DC  can be calculated by means of equation (11) and it is equal to 20. 

Due to the absence of restrictions about the length L of the waveguide, the lock-in value DC  of the amplitude, 

expressed from equation (11), does not depend on L. This means that, given a certain waveguide whose length is equal 



  
 

to L, we can obtain a lock-in value DC  whose detachment distance, calculated from equation (10), is longer than L. In 

this situation, due to the restriction imposed from the waveguide length L, the detach value DC  obviously decreases. In 

fact, even if the beams characterised from an amplitude lesser thanDC  tend to be expelled from the waveguide, the 

detachment takes place at a distance that is  longer than the waveguide length L and the beam remains locked-in. The 
new value DLC , that is lower than DC , can be calculated from equation (10) setting LzD =  and solving respect to C: 
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We want now to make some considerations about the paraxial approximation. 
Since we deal with a modified parabolic waveguide, we are in the presence of a curvature, with respect to the z axis, 
that increases with z. We have not to forget that we are in a paraxial approximation, that is the derived equation s are 
valid until the angle between the propagation direction and the longitudinal direction is lesser than 8°÷10°. This means 
that, due to the analytical expression of the waveguide, expressed from equation (3) or equation (4), once the 'a' or 'd' 
parameter has been chosen the other parameter is unavoidably fixed. The condition must be imposed only at the 
entrance of the waveguide, where the curvature, with respect to the longitudinal direction is maximum and decreases up 
to zero at the end. In analytical terms this means that it is possible to impose this condition to the first derivative of 
equation (3) to calculate the maximum propagation distance: 
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that gives: 
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This condition must be considered in the project of the delay branch. 
We want now to calculate the length of the curve expressed by equation (3), since it is necessary to control the optical 
path, and therefore the phase variation, of the beam that propagates inside it. 
Considering equation (4), the first derivative of z with respect to x is: 
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and the elementary length of the curve, as a function of x is: 
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Integrating equation (17) we have: 
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It is possible to see that the integral becomes indefinite when x tends to -d, as one could expect due to the structure of 
the curve. To define the constant that is present in equation (18) it is necessary to calculate the limit of the integral when 
x tends to -d: 
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The length of the curve is therefore equal to: 
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that is obviously a complex function of 'a' and 'd' parameters.  
 

4. NUMERICAL SIMULATION OF THE EFFECT 
 
We have simulated the device from the numerical point of view using a FD-BPM algorithm to study its behaviour and 
to see if it agrees with the developed theory. 
At first the design does not consider the physical limitations that can arise when we deal with technological fabrication 
problems. In the next paragraph we will consider this kind of problems. 
We use, in this situation, a geometrical approach, that is we do not care of imposing particular conditions that would be 
necessary in a real situation, such us to use the same 0n∆  for all the waveguides, letting us a higher number of degrees 

of freedom. We are further free of using the wavelength we need to generate the proper phase variation according to our 
needs. This is not obviously possible in a real case where the wavelength is given 
Let us choose for example the half length of the delay branch waveguide equal to 20: 

         20=da .       (21) 
Since we have to respect, even in this design approach, the paraxial condition, we have to solve the system of equation s 
composed by equation (21) and equation (15) that gives a=16.9, d=1.4. 
The width of the waveguide must obviously be less than 'd' and we choose, for example b=0.25, that is to suppose a 
waveguide width equal to 2b=0.5. 
The spot size of the beam must be less or equal to 'b'. Since we deal with a hyperbolic secant profile, expressed by 
equation (1), the width is linked to the amplitude C, that is the greater is C the narrower is the beam. A proper value is 
C=20. 
The difference of length between the interested part of the main waveguide and the delay branch can be calculated using 
equation (20) that gives 1305.0=∆ GL . Once chosen the wavevector we have immediately the phase difference. 

We have not, until this point, chosen the phase values to code. We decide to generate a phase difference a bit greater 
than π/2 for the passage through the secondary waveguide and a phase difference a greater than π for the passage 
through the delay branch. This is equal to say that the length of the delay branch must almost be twice the length of the 
secondary waveguide. Since the length of the delay branch has already been chosen we have to design the secondary 
waveguide. A proper structure is for example the one whose projections on the longitudinal and transversal directions 
are respectively equal to 35 and 2, that gives a difference of length between the interested part of the main waveguide 
and the secondary waveguide equal to 0.0571, that is less than one half of the relative difference of length of the delay 
branch. 
We have now to find the value of the wavevector that allows to obtain the chosen phase values. A good values is β=30, 
that gives a phase value of 1.24 π for the delay branch and a phase value of 0.55 π ( a bit larger than the minimum value 
of π/2 that allows the repulsion between two close soliton beams) for the secondary waveguide. 
Once chosen all the geometrical values of the structure it is necessary to select the refractive index of the waveguides to 
ensure the correct trapping of the beams inside them. 
From equation (11) we have: 
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Substituting the numerical values we have 5

0 101 −⋅=∆ Gn . 

Since for the secondary waveguide we have13: 
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where Gv  is the tangent of the angle between the waveguide and the longitudinal direction, it is possible to solve 

equation (23) with respect to Sn0∆  giving: 
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Substituting the numerical values we have 6
0 1004.2 −⋅=∆ Sn , that is 5 times less than the value found for the delay 

branch. This difference reflects the different geometry, and therefore the different propagation conditions, of the two 



  
 

considered optical structures. We further choose for the main waveguide a refractive index value equal 5

0 101 −⋅=∆ Gn , 

so that the beam that propagates inside the main waveguide does not enter in the delay branch unless it is pushed inside 
it. 
The design approach used until this point is obviously practical for the numerical simulations since, as we already said, 
we have no physical restrictions, but absolutely impossible to be used in a real device design due to the greater number 
of limitations that is necessary to respect. We show a real design approach in the following. 
 

 
    Fig.6a         Fig.6b 

 
    Fig.6c         Fig.6d 
Figs.6 Upper view and numerical simulations. The parameters of the waveguide are a=16.9, d=1.4, b=0.25, 5

0 101 −⋅=∆n . 

(a) Upper view of the structure. 
(b) Numerical simulation of the behaviour of the structure in the presence of the only input 1. 
(c) Numerical simulation of the behaviour of the structure in the presence of the only input 2. 
(d) Numerical simulation of the behaviour of the structure in the presence of both input 1 and input 2. 
 
Further we neglect to insert at the end of the structure a proper propagation distance that allows to the beam that enters 
alone in the structure through input 1 to exit with the same input phase, since we are mainly interested to the phase 
variations. The drain waveguide has been designed in a way similar to the secondary waveguide. 
The geometry of the designed structure is shown in fig. 6a. 
Let us analyse the results of the numerical simulations for the three possible input combination to demonstrate the 
correctness of the developed theory, neglecting the situation of no inputs that represents the first combination according 
to table 1. 



  
 

In fig. 6b the numerical simulation in case of the presence of the only input pulse at the entrance 1 (the second input 
combination of table 1) is shown. In this case, since the refractive index variation is equal to the one of the delay 
branch, the beam propagates undisturbed and reaches the output, generating a proper phase coded pulse. 
In fig. 6c the numerical simulation of the third input combination, that is the presence of only an input pulse at the 
entrance 2 is shown. In this case, the pulse first propagates properly trapped inside the secondary waveguide , due to the 
fact that the parameters of the structures have been designed to lock it. It reaches the main waveguide, with a certain 
phase difference that we have designed to be equal to 0.55 π, reaching the output, and generating a proper output phase 
coded pulse. 
In fig. 6d the numerical simulation of the fourth input combination, that is the presence of both input pulses at the 
entrances is shown. In this case, the two pulses meet at the merging point between the main waveguide and the 
secondary waveguide with a relative phase difference greater than 0.55 π, that is in a repulsive situation. The two beams 
propagate parallel each other properly separated, until reaching the bifurcation point. In this zone the pulse relative to 
input 1 is pushed into the delay branch, while the pulse relative to input two is pushed inside the drain waveguide where 
it reaches the drain output. The first pulses, that propagates inside the delay branch, is trapped inside it since the 
structure has been properly designed and enters again inside the main waveguide with a relative designed phase 
difference equal to 1.24 π, reaching the output and generating a proper output phase coded pulse. 
The numerical simulations, as shown in figures 6, confirm the theory developed. 
 

5. A NUMERICAL DESIGN OF THE DEVICE 
 
We want now to give a numerical example for the design of the considered device. 
We suppose to have a Schott B 270 glass, whose optical parameters at nm6200 =λ  are 53.10 =n  and 

/Wm104.3 220

2

−⋅=n  being 0n  and 2n  are the linear and nonlinear refractive indices respectively13. Let us consider a 

spot size of the beam equal to m100 µ=d .  

The design rules are very restrictive in a real situation since it is necessary to match different requests with a reduced 
free choice of parameters. In fact once fixed the source and the proper material for the given source it is necessary to 
design the geometry of the structure to trap the pulses with a proper soliton intensity level, generating the necessary 
coded phase variation. Further, since we use the same constructive technology, we suppose that the refractive index 
variation 0n∆  is the same for the delay branch and for the secondary waveguide, introducing another restriction.  

It is well known that, given a certain material and a certain light source, the intensity necessary to generate a soliton 
beam is given by: 
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where β is the wavevector of the beam. Substituting the numerical values into equation (17) we have 
215 /1074.3 mWI s ⋅= .  

Since the intensity of the beam sI  is related to its amplitude C from13: 
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it is possible to express eqs.(11) and (23) in term of the intensity of the beams. 
We choose for example 2

0 101 −⋅=∆n  and we start with the design of the device. We want to code the third situation 

(only a pulse at the input 2) with a relative phase variation just greater than π/2 and the forth situation (both the input 
pulses) with a relative phase very close to π. 
We choose mdd µ202 0 == . Substituting this value into equation (15) we obtain a=0.0639. In this way the geometry of 

the delay branch is totally defined. If we choose mb µ96.19= , using equation (11) and equation (26) we obtain a lock-

in value 216 /1025.1 mWI D ⋅= , that is a value above the soliton threshold calculated with equation (25) and below the 

second order soliton threshold. 
We have now to check if, with these values, we have obtained a phase difference value very close to π, as we desire. 
The phase difference value can be calculated as the product of the wavevector and the difference of path between the 
delay branch and the main waveguide. Using equation (20) we obtain πφ 59.0=∆ . This value is very close to the other 



  
 

phase value, generating two phase values very close each other. In this case it is necessary to make some correction to 
the geometry of the delay branch to correct the phase value to a value close to π, keeping at the same time the lock-
intensity above the soliton generation threshold. We choose to increase the value of the "a" parameter, that allows the 
paraxial approximation to be conserved. If we increase this parameter by 1.53 times, the total length of the delay branch 
increases. The new intensity lock-in value decreases to 215 /1036.5 mWI D ⋅= , that is always above the soliton 

generation threshold. The phase value is in this case equal to π, as we desired at the beginning of our computation. 
It is now necessary to project the secondary input waveguide. We want to obtain the same intensity lock-in value 
calculated for the delay branch and a phase difference value a bit greater than π/2. 
This kind of waveguide as already been studied13, showing a behaviour similar to the parabolic waveguide and a lock-in 
value equal to: 

        
( )2
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02

v

n
C G

D

∆
= ,       (27) 

where Gv  is the tangent of the inclination angle with respect to the longitudinal direction. It is obviously necessary to 

respect, even in this case, the paraxial approximation; this means that once we have chosen the distance La  between the 

second input and the main input, the longitudinal length Lb  of the waveguide cannot be shorter than a minimum, 

calculated according to the paraxial limit, that is: 
        LLL bba 14.08tan =°≤       (28) 

Since we suppose to generate this waveguide using the same physical procedure used for the delay branch, we have to 
suppose that the value 2

0 101 −⋅=∆n  is the same for both the waveguides. If we use as a first attempt value daL = , to 

generate a device whose lateral extensions with respect to the main waveguide are the same, we immediately obtain Lb  

from equation (28), that allows us to calculate Gv . Substituting these values into equation (27), using equation (26) we 

have an intensity lock-in value equal to 217 /1023.2 mWI DS ⋅=  and πφ 12.1=∆ S . The waveguide designed according to 

these criteria is totally useless for our purpose since the lock-in value is greatly above the generation value of a second 
order soliton and consequently above the lock-in value calculated for the delay branch. Further, the phase value 
obtained is totally different with respect to the one we desire. It is therefore necessary to find another approach. If we 
impose the waveguide to have the same lock-in intensity of the delay branch, considering always daL = , we can 

calculate Lb , reversing the reasoning followed above. In this case we obtain mbL µ5650=  that satisfies the paraxial 

condition expressed by equation  (27). If we calculate the phase difference we have πφ 175.0=∆ S , that is not only a 

different value respect to the desired one but also a value that does not allow the repulsion between the two beams, that 
is a fundamental condition to make the device to operate correctly. 
Consequently it is necessary to act also on La , considering a device that has not the same lateral extension with respect 

to the main waveguide. Fixing the intensity lock-in level to be equal to the one of the delay branch and fixing the phase 
difference Sφ∆  to be as close as possible to 0.5 π, it is possible to demonstrate that a valid waveguide is the one 

characterised by mdaL µ603 ==  and mbL µ16935= , that provides a phase difference πφ 53.0=∆ S , respecting the 

paraxial condition expressed by equation (27). 
The problems found in the design of the secondary input waveguide could be avoided if we could act also on 0n∆ , but 

this is very difficult  to be made in a real situation where both the delay branch and the inclined waveguide are 
generated in the same process. 
Different approaches can be used to design the device, as for example, to dimension first the secondary waveguide and 
the delay branch, but they are always subjected to different restrictions due to the physics of the waveguides generation 
process. 
Further considerations about the temporal behaviour and the absorbing behaviour of solitons in transverse refractive 
index profile device have already been studied13,14 and they are not repeated here for brevity. 
This kind of device can be connected in a properly cascaded configuration18 capable of accepting three input streams of 
pulses (a data stream and two cryptographic keys) and generating a unique stream of pulses characterized by a higher 
security level. 
 



  
 

7. CONCLUSIONS 
 
We have studied and designed a serial key based all-optical cryptographic device, whose working principles are based 
on the repulsive and propagation properties of solitons in a parabolic transverse refractive index profile, that we deeply 
analysed in the paper. 
The switching properties have been studied in details, obtaining some useful design criteria for a practical device. 
The device can be properly designed by means of the geometrical and optical parameters of the different structures that 
compose the modulator. 
The device, as it stands, can be connected in an half cascade configuration, capable of accepting three input streams of 
pulses ( a data stream and two cryptographic keys) and generating  a higher security level output stream. 
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