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ABSTRACT

An all-optical cryptographic device for securitypdipations, based on the properties of soliton bedspresented. It is
able to codify a given bit stream of optical pulsgsanging their phase and their amplitude as etifum of one or more
encryption serial keys that merge with the datasstr, generating an incomprehensible stream.

Its great advance is represented by its capalaifigncrypting in real time, without slowing the ddtow that can be

transmitted with its original velocity.

Keywords: cryptographic device, security device, solitoteraction, all-optical switching, spatial solitcal]-optical
device.

1. INTRODUCTION

The device described in this paper is capable difging a given bit stream of optical pulses, chaggheir phase and
their amplitude as a function of one or more entioypserial keys that merge with the data streaemegating an
incomprehensible stream. It is based on the sppcigderties of spatial solitons that are, as webwn, self-trapped
optical beams able to propagate without any chafdkeir spatial shape, thanks to the equilibriima self-focusing
medium, between diffraction and nonlinear refrattio

Their interesting properties have allowed to desigoertain number of spatial optical switches whithise the
interaction between two bright or dark soliton beamnd the waveguide structures induced by theseairtion$®.
Two distinct parallel solitons are generally usedratial condition for such interactions. In fatts well known that
when two distinct bright spatial solitons are lelved parallel to each other, the interaction fdregveen them depends
on their relative distance and their pHdse

A variety of useful devices can be thought and glesl using the properties of solitons. One of tlestnimportant
features is their particle-like behaviour and thielative robustness to external disturbs.

Interesting effects have been found in the studyaofsverse effects of soliton propagation at terface between two
nonlinégar materiafs’ or in a material in the presence of a gaussiaat¥e index profile, that is in low perturbation
regime.

It has been shown that it is possible to switcholtos, in the presence of a transverse refractiviex variation,
towards a fixed path, since the index variatiorsag a perturbation against which the soliton seasta particle,
moving as a packet without any loss of energy. Tdmss$ property makes possible to design usefubgtiical devices
such as a filté? or a high speed routér

The general problem of encrypting the binary detagmitted on an optical channel is very felt ia security field.

The aim of the present work is to find a new apphoto this problem, studying a device that is abléncrease the
security level of an optical channel, extending thedulation also to the phase of the output pulieacts as an
amplitude/phase converter accepting two binary rfaadd stream of pulses as inputs and generatingcue phase
modulated stream of pulses as output. The firehstris related to the data stream while the sestirdm is related to
the serial cryptographic key. The device can be@ny cascaded, adding further serial cryptograjkigs, generating
a unique stream of pulses characterized by a higbheurity level. The great advantage is that thacdeis totally
passive, which means that is does not need exéremo work properly. The working principle is stoin fig.1.
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In its basic geometry a soliton beam travels waaeguide which, in the plane between the claddimdjthe substrate,
has a distribution of refractive index which follswa triangular curve, with a modified parabolicfijeo

We start studying the general structure of theakevrhen the transverse behaviour of a solitontimagular profilé®,
whose longitudinal profile is parabdlfc is discussed. Once the properties of motion aréved, we investigate the
structure from the global point of view, derivingjthe properties and the operative conditionst tepresents the scope
of this paper.
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Fig.1 Working principle of the device
2. STRUCTURE OF THE DEVICE

To simplify the development of the theory we comsidnly a 2 inputs -1 output device. The purposthefdevice is to
generate a phase modulated pulse according toiffeeedt combinations of amplitude of input pulsésat represent

the data stream and the cryptographic stream.
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Fig.2 Structure of the device.

In the following we briefly call them input 1 andpiut 2. This is equal to say that, in the presearide/o binary inputs,
the possible amplitude combinations are 4, andatiput pulse has to assume 4 different phase valuiisout
requesting auxiliary energy.



We suppose to work with soliton beams to use thgiacting or repelling propertieand their particular behaviour
when they propagate in a transverse refractivexipdefile’®. The structure we want to study is shown in fig. 2

We also suppose that the two input pulses entdrdmrelative inputs of the device with the samesph& his is not a
restriction since any phase difference can be plppempensated.

Owed to the fact that we deal with equal streansutdes the last condition is that the input pulsescharacterised by
the same amplitude.

The device is composed by 4 parts: the main wadeguhe secondary waveguide, the delay branch lemdirain
waveguide. The geometry and the refractive indduesaof these four components strictly determireeféature of the
device and their values will be designed as dismligsthe following.

Let us analyse the behaviour of the device in the possible input situations. Since we deal witlaby input pulses
we consider the two values of logical zero (absafqaulse) and logical one (presence of pulse).réfer to them as
zero and one.

The first situation is when the two inputs are édaoazero. In this case, due to the passive nabfithe device, we
obtain a zero in the output.

The second situation is when the first input isaéda one and the second input is equal to zerdghikcase, if the
refractive index of both the delay branch and trerdwaveguide is less or equal to the refracthéek of the main
waveguide, the pulse propagates undisturbed arehithes the output, with a phase that is equéidgtopagation
phase along the main waveguide. If the length isfwaveguide is properly chosen, according to tagekength of the
beam, the phase of the output pulse is equal tphihse of the input pulse. In the first situatibere was an absence of
pulse and its phase value was virtually equal to.Ze this case the phase value variation has bkesen equal to zero
but we are in the presence of a pulse. The phasativa could anyway be chosen at will, but we kéefxed at zero
for simplicity. The behaviour of this kind of waugide has already been studied

The third situation is when the first input is ebjitazero and the second input is equal to on¢hikicase, since we are
in the proper refractive index conditions of theveguide and the delay branch is properly shifteth wespect to the
input point of the secondary wave, the second ippige is trapped in the main waveguide and itheac¢he output
with a certain phase difference, that we definer|aespect to the previous case due to the fatittpropagates, in the
initial part, into the secondary waveguide.

The fourth situation is when both the inputs areaédo one. In this case the two pulses meet atéhneerging point
between the main waveguide and the secondary wade=du this case, since we are in soliton progagatondition,
they can attract if their relative phase is inclitbetween zero a2 or between 2 and 2, or they can repel if their
relative phase is included betweaf2 and 3v2. If the length of the secondary waveguide isseimoto generate a
repulsive condition, the two solitons propagatéhim main waveguide properly separated until regrtiie bifurcation
point between the main waveguide, the delay bramchthe drain waveguide. At this point the twotsol$ detach: the
first one enters the delay branch while the seacomaenters the drain waveguide.

The first soliton propagates in the delay brangheeiencing a phase variation that depends on tigtHeof the branch
and therefore is properly selectable and can bseshdifferent from the previous cases, generatiegfourth phase
condition. The second pulse, on the contrary, pyafes in the drain waveguide where it reaches tbpep drain
output.

Ne°. INPUT 1 INPUT 2 OUTPUT | OUTPUT PHASE
(INTENSITY) | (INTENSITY) | INTENSITY PHASE CONDITION
1 0 0 0 0 -
2 l, 0 l, 0 -
3 0 I, I, 9, T 3
2 /. 2
4 |1 Iz |1 ¢1,2 -

Table 1 Working scheme of the device

The delay branch is composed by a properly modleditudinal parabolic waveguide, whose purpode iaccept the
beam from the main waveguide with an angle thagpaets the paraxial approximation, to propagatéhénging its



direction until reaching a straight longitudinatedition and to reverse this sequence until carrtlegpulse inside the
main waveguide with a certain phase difference. @éfeaviour of this modified parabolic waveguidstisdied later.
The situation is summarised in table 1, where @l pointed out the pulse that reaches the owtpptovide more
details about the working principles of the devieegn if we consider input pulses with the samelénaje.

We will now define better the profile of the reftae index of the waveguides and the propertietheflongitudinal
modified parabolic waveguide that compose the detapch.

3. PROPERTIES OF A SOLITON IN A MODIFIED LONGITUDIN AL PARABOLIC WAVEGUIDE

We want now to define the structure of the modiffmtabolic waveguide composing the delay branchini its
peculiar properties that allow the loop to workgedy.

We choose this kind of waveguide because it issthplest curve that carries progressively the soltheam from a
propagation angle that respects the paraxial appegion until a angle that respects a parallel itudinal propagation
and vice versa.

This curve could be roughly approximated with a&éincurve, but the final result would be a too ghzath, since the
soliton reaches the reversing point with a certaétination. Further the parabolic path is theacapry followed from a
soliton beam that is injected into a linear tramsgerefractive index profile, that is the transeepsofile that we are
going to consider.

Let us consider a soliton beam propagating in td@ection, whose expression of the field Q at bleginning of the
structure is:

Q(x,O) = CsecI{C(x Y)] , (1)
where X is the position of the centre of the beam and &risal constant from which both the width andahwlitude
of the field depend. The variables x and z are madiged with respect to the wavevector of the wave therefore they
are adimensional quantities.

When the soliton beam is propagating in a trianguénsverse index profile, whose maximum valuéng and whose
maximum width is 2b, it is subjected to a transeesceleration equal t5*®
2An
a; :TOCZ . (2)

We use, for our analysis, a dynamic point of viéwat is to consider the step by step transversgivelposition of the
waveguide with respect to the beam using the ablgias a time parameter.
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Fig.3 Relative distance waveguide-soliton at some propagdistance z.

If X, (z) is the position of the central part of the waveguprofile with respect to z, the longitudinal fowh the
waveguide is chosen to be a modified parabolic:

xG(z)=§—¥z. 3)



where 'a' is a real constant responsible for threature of the waveguide and 'd' is a real congsyponsible for the
position of the curve. Equation (3) can be bettetarstood if it is expressed as a function of af it

z=-a,/x, +d +a/d . 4)
It is possible to see that it is positioned in #egEond quadrant of the Cartesian plane, it hastacaleasymptote at

Xq (z)= d when z — a/d . It shows a gradually increasing derivative, gmygvfrom a starting angle at x=0, chosen to
be below the maximum angle allowed from the patagjgproximation, until reaching a vertical alignrmeat
X (z):d , that is what we want to make the device work priyp To respect this term it is necessary to inepas

certain condition to the 'a' and 'd' parametersyashow later. A graphical representation of eigunaf4) is shown in
fig. 4 for a=16.9 and d=1.4.
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Fig.4 Graphical representation of the modified pafie waveguide for a=16.9, d=1.4.

The local inclination of the waveguide with resptcthe longitudinal axis z, can be regarded agrdnesverse relative
velocity of the waveguide that appears to the bsnpropagates longitudinally:

G = d 2 (5)
2 a a
Using equation (2) it is possible to calculatettiamsverse relative velocity:
¢ 2An
v, =|a,d{=—->=C?z 6
o =Jande == (6)
and the position of the beam
¢ An
X, = |Vv,d{ =—=C?Z°. 7
o = Jvete == 7)

Equation (7) is valid for a propagation in the fficpiadrant of Cartesian plane. Since we consitgequir case, a
propagation in the second quadrant, we must revkessign of the second member of the equatiorsidered.

Initially the beam is positioned in the centre lud tvaveguide. Since the waveguide appears to matrerespect to an
observer that follows the longitudinal directionittwa relative velocity expressed by equation (6§ soliton beam
enters in the constant acceleration zone, wherevalscity increases linearly with z. It also follewa parabolic
trajectory, according to equation (7), until it r&ims in this part of the waveguide.

After that the beam has propagated for a certalistance, two different situations may happen:litbam leaves the
acceleration zone without reaching the velocityhef waveguide at that z, or the beam acquiresacitglthat is greater
than or equal to the velocity of the waveguide. Tite event may called ‘detach situation’, sinbe beam leaves the
waveguide, while the second one may be called “lackituation’ since the beam reaches the othee sifl the
waveguide where it is stopped, reversing its pathso on.

At any value of z, as shown in fig. 3, the distamge between the beam and the waveguide is:



2 2 _ a2 2
dBG=xB—xs—ﬁzz-z—ﬁm”‘zz(b S J+2ﬁz ®)
b a a a’b a
A detach situation takes place when:
dy, =b. ©)
If we solve equation (9) with respect to z we caftalate, if it exists, the propagation distancesmehthe detachment
begins:
Jd +.,d-b-a’AnC?
z, = > 5 . (10)
b+a*An,C
ab

The two solutions refer to the detach situationdmwthe negative sign of the root is consideredpdhe first cross of
the centre of the waveguide in the lock-in situat{svhen the positive sign of the root is considgr&tudying the
discriminator of equation (10) it is possible taide the value of the amplitud® that divides the lock-in values from

the detach values:

V2

C, :l(d _bJ . (11)
al\ An,

It is possible to see, from equation (11) that iiere the curvature of the waveguide (‘a' paramétergases or the

more the refractive index decreases and the r@gréncrease. This behaviour agrees with what onedcexghect.

We want now to calculate the inclination accordiogwhich a soliton, whose amplitude is smaller thila@ detach
amplitude, leaves the waveguide. Since the merdi@mgle is equal to the detach velocity, substitugquation (11)
into equation (6), we have:

®=tan"v, (12a)
and

2
v, :vB(zD):M(\/E -Jd-b-a*an,C?). (12b)

b+a’An,C?
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Fig.5 Detach angl® in degrees, equal tatar(VD), versus C for a=16.9, d=1.4, b=0.2%n, =1[10"°.

In fig. 5 it is shown the graphical behaviour ofiation (12) for a=16.9, d=1.4, b=0.2An, =110°. The detach value
C, can be calculated by means of equation (11) aisceijual to 20.

Due to the absence of restrictions about the lemgihf the waveguide, the lock-in valu€, of the amplitude,
expressed from equation (11), does not depend dinis. means that, given a certain waveguide whesgth is equal



to L, we can obtain a lock-in valué, whose detachment distance, calculated from equéti@), is longer than L. In
this situation, due to the restriction imposed fritve waveguide length L, the detach valDg obviously decreases. In
fact, even if the beams characterised from an anudilesser tha@, tend to be expelled from the waveguide, the

detachment takes place at a distance that is 1dhge the waveguide length L and the beam rematised-in. The
new valueC, , that is lower tharC, , can be calculated from equation (10) settigg= L and solving respect to C:

c _\/—B+\/Bz - 4AC
oL~ '

13
2A (13)
where
A=a‘An’L? (13a)
B =2a’bL’An, - 2a°by/dLAn, +a‘h?An, (13b)
C=b’L? - 2ab’Ly/d +a’b®. (13c)

We want now to make some considerations aboutdhexjal approximation.

Since we deal with a modified parabolic waveguide,are in the presence of a curvature, with resggettie z axis,
that increases with z. We have not to forget thatane in a paraxial approximation, that is thewsgtiequation s are
valid until the angle between the propagation dioecand the longitudinal direction is lesser tl&n10°. This means
that, due to the analytical expression of the waidsy expressed from equation (3) or equationqdge the 'a’ or 'd'
parameter has been chosen the other parametemi®idably fixed. The condition must be imposed oatythe
entrance of the waveguide, where the curvaturdy reigpect to the longitudinal direction is maximand decreases up
to zero at the end. In analytical terms this mehas it is possible to impose this condition to fivet derivative of
equation (3) to calculate the maximum propagatistadce:

|x. (0) = 2f < tang® = 014, (14)
that gives:
g <7007, (15)

This condition must be considered in the projedhefdelay branch.

We want now to calculate the length of the curvpressed by equation (3), since it is necessarpiitral the optical
path, and therefore the phase variation, of thenbtbat propagates inside it.

Considering equation (4), the first derivative ofiith respect to x is:

dz__  a (16)

dx 2Vx+d

and the elementary length of the curve, as a fonaif x is:

_ 2 2 2 az 2
d =vdx*+dz —\/dx +4(x+d)dx . @

Integrating equation (17) we have:

4x+4d + &
(c+a)  x+d L& 4x+4d +a’
1(x)= X +-log(ex-+8d +a® +4(x+d) — g )+constant (18)

2
It is possible to see that the integral becomesfinide when x tends to -d, as one could expecttdube structure of
the curve. To define the constant that is preseatjuation (18) it is necessary to calculate tiét lbf the integral when

X tends to -d:
2

lim 1(x) :% loga. (19)

The length of the curve is therefore equal to:

d ([4d+a® a’° 4d + &’ a’
L. =1(0)=— +—Ilog(8d +a’ +4d -—Iloga, 20
e =1(0)= 5 =57+ oo ) ~log (20)




that is obviously a complex function of 'a' andpdfameters.
4. NUMERICAL SIMULATION OF THE EFFECT

We have simulated the device from the numericahtpof view using a FD-BPM algorithm to study itshlagiour and
to see if it agrees with the developed theory.

At first the design does not consider the phydiaaitations that can arise when we deal with tedbgizal fabrication
problems. In the next paragraph we will considés kind of problems.

We use, in this situation, a geometrical appro#tedt, is we do not care of imposing particular ctinds that would be
necessary in a real situation, such us to usedime &n, for all the waveguides, letting us a higher numtifedegrees

of freedom. We are further free of using the warngth we need to generate the proper phase variaticording to our
needs. This is not obviously possible in a reaé aalsere the wavelength is given
Let us choose for example the half length of tHaydbranch waveguide equal to 20:

a/d =20. (21)
Since we have to respect, even in this design agprdhe paraxial condition, we have to solve tratesn of equation s
composed by equation (21) and equation (15) thaisga=16.9, d=1.4.
The width of the waveguide must obviously be Ilémmt'd' and we choose, for example b=0.25, thai Buppose a
waveguide width equal to 2b=0.5.
The spot size of the beam must be less or equal.t§ince we deal with a hyperbolic secant profiepressed by
equation (1), the width is linked to the amplitudgethat is the greater is C the narrower is tharbea proper value is
C=20.
The difference of length between the interested gfathe main waveguide and the delay branch cacalrilated using
equation (20) that giveAL_ = 0.1305. Once chosen the wavevector we have immediatelphiase difference.

We have not, until this point, chosen the phaseasto code. We decide to generate a phase diferetit greater
than 172 for the passage through the secondary waveqnidea phase difference a greater thafor the passage
through the delay branch. This is equal to sayttieiength of the delay branch must almost beehhe length of the
secondary waveguide. Since the length of the defagch has already been chosen we have to desigsettondary
waveguide. A proper structure is for example the aose projections on the longitudinal and trarsaledirections
are respectively equal to 35 and 2, that givedfardince of length between the interested parhefrhain waveguide
and the secondary waveguide equal to 0.0571, 4Hat$ than one half of the relative differencéeafith of the delay
branch.

We have now to find the value of the wavevectot #ilaws to obtain the chosen phase values. A gabakes i3=30,
that gives a phase value of 1.24or the delay branch and a phase value of @64 bit larger than the minimum value
of 172 that allows the repulsion between two closet@olbeams) for the secondary waveguide.

Once chosen all the geometrical values of the &tredt is necessary to select the refractive inofethe waveguides to
ensure the correct trapping of the beams insida.the

From equation (11) we have:

Ang, aiC? (22)
Substituting the numerical values we hawe,, =1107°.
Since for the secondary waveguide we fave
CD :V—G1 , (23)
2(An05 )E

where v is the tangent of the angle between the wavegaittk the longitudinal direction, it is possible wve
equation (23) with respect thn . giving:

1
V4 2
An =] —-| . 24
os (ZCD) (24)

Substituting the numerical values we hatn,, = 204[10°, that is 5 times less than the value found for db&ay
branch. This difference reflects the different getmyy, and therefore the different propagation ctons, of the two



considered optical structures. We further choosehfe main waveguide a refractive index value eqhg|, =1107,

so that the beam that propagates inside the maieguéde does not enter in the delay branch untéspushed inside
it.

The design approach used until this point is obslppractical for the numerical simulations sinae,we already said,
we have no physical restrictions, but absolutelgassible to be used in a real device design dtlectgreater number
of limitations that is necessary to respect. Wenshaeal design approach in the following.
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Figs.6 Upper view and numerical simulations. Theapeeters of the waveguide are a=16.9, d=1.4, b=@\p5 =1[10°.
(a) Upper view of the structure.

(b) Numerical simulation of the behaviour of theusture in the presence of the only input 1.

(c) Numerical simulation of the behaviour of theusture in the presence of the only input 2.

(d) Numerical simulation of the behaviour of theisture in the presence of both input 1 and input 2

Further we neglect to insert at the end of thecttine a proper propagation distance that allowthédbeam that enters
alone in the structure through input 1 to exit witle same input phase, since we are mainly inextest the phase
variations. The drain waveguide has been designadiyay similar to the secondary waveguide.

The geometry of the designed structure is showigiréa.

Let us analyse the results of the numerical sirmariatfor the three possible input combination tendestrate the

correctness of the developed theory, neglectingitbation of no inputs that represents the fisshbination according

to table 1.



In fig. 6b the numerical simulation in case of @resence of the only input pulse at the entran(thel second input
combination of table 1) is shown. In this casecsithe refractive index variation is equal to thee @f the delay
branch, the beam propagates undisturbed and retdehestput, generating a proper phase coded pulse.

In fig. 6¢ the numerical simulation of the thirdpirt combination, that is the presence of only guirpulse at the
entrance 2 is shown. In this case, the pulsegngpagates properly trapped inside the secondavgguéde , due to the
fact that the parameters of the structures hava besigned to lock it. It reaches the main waveguwith a certain
phase difference that we have designed to be ¢g@ab51, reaching the output, and generating a properubytipase
coded pulse.

In fig. 6d the numerical simulation of the fourtiput combination, that is the presence of both tifuuises at the
entrances is shown. In this case, the two pulsest methe merging point between the main wavegaidé the
secondary waveguide with a relative phase diffexegreater than 0.58 that is in a repulsive situation. The two beams
propagate parallel each other properly separat&d,raaching the bifurcation point. In this zoree tpulse relative to
input 1 is pushed into the delay branch, whileghkse relative to input two is pushed inside thardwaveguide where
it reaches the drain output. The first pulses, fhrafpagates inside the delay branch, is trappeidéanis since the
structure has been properly designed and enteiis aggide the main waveguide with a relative desijrphase
difference equal to 1.24, reaching the output and generating a proper oipase coded pulse.

The numerical simulations, as shown in figuresaificm the theory developed.

5. ANUMERICAL DESIGN OF THE DEVICE

We want now to give a numerical example for thégiesf the considered device.
We suppose to have a Schott B 270 glass, whosecabpgiarameters atd, =620m are n, =153 and

n, =34010%m?W being n, and n, are the linear and nonlinear refractive indicespeetively®. Let us consider a

spot size of the beam equaldg =10zm.

The design rules are very restrictive in a realatibn since it is necessary to match differenuests with a reduced

free choice of parameters. In fact once fixed e and the proper material for the given soitfrcenecessary to

design the geometry of the structure to trap thegsuwith a proper soliton intensity level, genegthe necessary

coded phase variation. Further, since we use thee sanstructive technology, we suppose that thecbe index

variation An; is the same for the delay branch and for the staryrwaveguide, introducing another restriction.

It is well known that, given a certain material amdertain light source, the intensity necessargeerate a soliton

beam is given by:

2n

s 2 : 2 (25)
dg;n,

where B is the wavevector of the beam. Substituting thememical values into equation (17) we have

|, =37410°W/m?.

Since the intensity of the beahy is related to its amplitude C frdfh

=t oo (26)
Iogiz+\/§il 2n,
it is possible to express eqs.(11) and (23) in tefthe intensity of the beams.
We choose for examplén, =1[107 and we start with the design of the device. Wetwarcode the third situation
(only a pulse at the input 2) with a relative phaasation just greater tham'2 and the forth situation (both the input

pulses) with a relative phase very closetto
We choosed =2d, =20um. Substituting this value into equation (15) weadiia=0.0639. In this way the geometry of

the delay branch is totally defined. If we chodse19964m, using equation (11) and equation (26) we obtdock-

in value 1, =125[10"°W/m?, that is a value above the soliton threshold dated with equation (25) and below the

second order soliton threshold.

We have now to check if, with these values, we halvained a phase difference value very closg, tas we desire.
The phase difference value can be calculated aprtaict of the wavevector and the difference dhdmtween the
delay branch and the main waveguide. Using equ&Bi@pwe obtainA¢g = 0597 . This value is very close to the other



phase value, generating two phase values very elasie other. In this case it is necessary to make orrection to
the geometry of the delay branch to correct thesphalue to a value close tp keeping at the same time the lock-
intensity above the soliton generation threshole. koose to increase the value of the "a" paramtbtar allows the
paraxial approximation to be conserved. If we iaseethis parameter by 1.53 times, the total leafithe delay branch

increases. The new intensity lock-in value decreasel, = 536[10°W/m?, that is always above the soliton

generation threshold. The phase value is in thie egual tat, as we desired at the beginning of our computation

It is now necessary to project the secondary inpaveguide. We want to obtain the same intensitk-lacvalue
calculated for the delay branch and a phase difter@alue a bit greater thar®.

This kind of waveguide as already been studjeshowing a behaviour similar to the parabolic veaide and a lock-in
value equal to:

C,=—& 27)

2(an, )z

where V; is the tangent of the inclination angle with resde the longitudinal direction. It is obviouslgcessary to

respect, even in this case, the paraxial approiomathis means that once we have chosen the dist@n between the
second input and the main input, the longitudireaigth b, of the waveguide cannot be shorter than a minimum,
calculated according to the paraxial limit, that is

a, <b, tan8° = 014b, (28)
Since we suppose to generate this waveguide usengame physical procedure used for the delay brame have to
suppose that the valugn, =110 is the same for both the waveguides. If we use fast attempt valuea, =d, to

generate a device whose lateral extensions wifectso the main waveguide are the same, we imredgiebtain b,
from equation (28), that allows us to calculatg. Substituting these values into equation (27 gisiquation (26) we

have an intensity lock-in value equal kg, = 223[10"W /m? and Ag, = 112/7. The waveguide designed according to
these criteria is totally useless for our purpdeeesthe lock-in value is greatly above the genenatalue of a second
order soliton and consequently above the lock-iluesacalculated for the delay branch. Further, thase value
obtained is totally different with respect to theeowe desire. It is therefore necessary to findreroapproach. If we
impose the waveguide to have the same lock-in &ierof the delay branch, considering alwags=d, we can

calculateb_, reversing the reasoning followed above. In tlisecwe obtairb, =5650 um that satisfies the paraxial
condition expressed by equation (27). If we caltaithe phase difference we hate), = 0.1757, that is not only a

different value respect to the desired one but algalue that does not allow the repulsion betwberiwo beams, that
is a fundamental condition to make the device terate correctly.
Consequently it is necessary to act alscapnconsidering a device that has not the same laggt@nsion with respect

to the main waveguide. Fixing the intensity lockerel to be equal to the one of the delay branmzhf&ing the phase
difference Ag, to be as close as possible to @5t is possible to demonstrate that a valid waiggus the one

characterised bya, =3d =60um and b, =16935 um, that provides a phase differenfg, = 05317, respecting the

paraxial condition expressed by equation (27).
The problems found in the design of the secondgwytiwaveguide could be avoided if we could aa als An,, but

this is very difficult to be made in a real siioat where both the delay branch and the inclinedegaide are
generated in the same process.

Different approaches can be used to design theeleas for example, to dimension first the secondeveguide and
the delay branch, but they are always subjectediffierent restrictions due to the physics of theveguides generation
process.

Further considerations about the temporal behawamar the absorbing behaviour of solitons in trarsveefractive
index profile device have already been stutfiéthnd they are not repeated here for brevity.

This kind of device can be connected in a propesiscaded configuratihcapable of accepting three input streams of
pulses (a data stream and two cryptographic kayd)generating a unique stream of pulses charaeteby a higher
security level.



7. CONCLUSIONS

We have studied and designed a serial key basegtidhl cryptographic device, whose working prpies are based
on the repulsive and propagation properties otadiin a parabolic transverse refractive indeXilg;ahat we deeply
analysed in the paper.

The switching properties have been studied in etabtaining some useful design criteria for acpical device.

The device can be properly designed by means afabenetrical and optical parameters of the diffestructures that
compose the modulator.

The device, as it stands, can be connected in lagdstade configuration, capable of acceptingetinput streams of
pulses ( a data stream and two cryptographic kayd)generating a higher security level outpuisire
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