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Abstract—The aim of this paper is to introduce an enhanced
approach for standard Automatic Speaker Recognition (ASR)
systems in noisy environment in conjunction with a Blind Source
Separation (BSS) algorithm. This latter is able to discern between
interfering noise signals and the reference speech signal, hence
it can be consider as a necessary preprocessing step. The main
problem of the proposed approach lies in the not removable
ambiguities typically of the BSS algorithms. In order to overcome
to this drawback, a geometrical constraint is also added to the
learning algorithm. A practical example shows the effectiveness
of the proposed approach in terms of recognition accuracy.

Index Terms—Automatic speaker recognition, Blind source
separation, Security monitoring, Cepstral coefficients.

I. INTRODUCTION

In last decades an increasing interest in security systems,
in particular of access control systems, has arisen. In specific,
a huge number of research efforts was directed to speaker
recognition problem. To this aim a large number of Automatic
Speaker Recognition (ASR) systems, with different accuracy,
are available in literature [1]. ASR architectures are very
simple to use, in fact there is need only that the user simply
pronounce a word or a sentence and the system can be able
to accept or discard him [2].

However, one of the main issue in ASR systems is the
presence of different sound sources in the controlled environ-
ment. It is in fact very improbable that the user is the sole
active source, but, on the contrary, it is plausible that in the
monitored environment there are some speaking people, some
noisy electronic devices, outdoor noises and other interfering
environmental noises. The discrimination from all these active
noises could be a very complicated task for the ASR system
[3].

Fortunately, in literature there exist several techniques able
to separate or extract sources of interest from a mixture of
different sound sources [4]–[6]. This problem is known by
scientific community as the Blind Source Separation (BSS)
problem. The term blind is meaning that no a priori informa-
tion is known neither on the mixing environment nor on the
mixed sources. The sole information is about the statistical
independence between sources. Since independence is a key
concept, the BSS problem is usually solved by applying the
Independent Component Analysis (ICA) approach [7], [8].
While proposed algorithms work very well when the mixing

environment is an unrealistic instantaneous one, several solu-
tions were proposed to solve BSS in a convolutive environment
too [9], but results seem not to be so convincing. Some of these
solutions work in time domain, others in frequency domain.
Each of them have some advantages and disadvantages, but
there is not a unique winning approach [10].

In order to solve the BSS problem in a reasonable amount
of time the problem is transformed into the frequency do-
main: the algorithm solves an instantaneous BSS problem for
every frequency simultaneously [11], [12]. Unfortunately in
frequency domain two trivial ambiguities occur that could
be particular troublesome [8]. The permutation ambiguity is
particularly tiresome: when converting a signal back to time
domain, contributions from different sources will appear into
a single channel, thus destroying the separation achieved in
the frequency domain; in addition the scaling indeterminacy
at each frequency bin will result in an overall filtering effect of
the sources. Different solutions to these problems can be found
in literature [13], [14]. In order to solve these indeterminacies
a geometrical constraint has been introduced [15] providing
good results.

In this paper we propose a preprocessing algorithm using
BSS algorithms in reverberant environment, based on the
geometric constraint [15], in order to extract the useful speech
and then recognize the user. The entire system is shown in
Figure 1, where the estimated signal ŝ of the source of interest,
extracted from noisy mixtures x1 and x2, is passed to the ASR
module that returns the user s.

BSS ASR

1
x

2
x

s
ŝ

Fig. 1. Proposed system composed of the cascade of a BSS preprocessing
step and an ASR step.

The rest of this paper is organized as follows. Section II intro-
duces the basic operation of an ASR system while Section III
explains as the BSS algorithm is implemented. Then Section
IV shows some experimental results and finally Section V
concludes the paper.
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II. AUTOMATIC SPEAKER RECOGNITION

The ASR system must be able to recognize each person
by anatomical differences, the type of vocal tract and habits
acquired in the way of speaking. To create a prototype of the
voice, the system has to extrapolate the tone of voice and
frequency characteristics. In order to obtain these characteris-
tics, each person in the training phase pronounces a particular
word or phrase that is saved in a database archive. Later, in the
recognition phase, the user is invited to say a word or a phrase.
There are two types of ASR systems: if both in the Training
phase and the recognition phase, the user must say the same
word or phrase, the system is called Text Dependent (TD); if
there is no need to pronounce the same word or sentence, the
system will be called Text Independent (TI) [16].

There are many problems during the use of a particular
method of voice recognition. Just think, in fact, to some
possible background noises, an incorrectly pronounce of the
word or phrase (in the case of a TD system), the change in
the pitch over the years, and, in particular the health states
that may in some way alter the voice. Among the advantages,
however, there is above all the convenience of the adoption of
a such method of user verification, since the voice recognition
is a not invasive method; also both hands and eyes are free to
make any other thing during authentication.

A recognition system should be able to manage invariants:
the characteristics of the word, the characteristic features of the
speaker that must be extracted from speech, while insignificant
elements, that do not lead to useful information, could be
ignored. In order to achieve a good recognition system, it is
necessary to obtain, from the waveform of the word or speech,
the peculiar elements that can uniquely distinguish the speaker.
Such elements are simply called features.

Both in the verification and the identification of a user, the
ASR system must be able to accomplish:

1) The feature extraction, that is the process of extracting
peculiar characteristics from the signal which can be
used for represent each speaker in the database;

2) The correspondence of features, that implies an effective
procedure to verify or identify the speaker by comparing
the extracted features from the speaker with those of a
known set of speakers.

The ASR systems have a first phase of training (or learning),
where each speaker provides samples of speech in such a way
that the system can build or train a model for each user. In the
successive phase of testing (recognition) a user utters a word,
or a phrase, that is compared to all reference models created
during the training phase. The system must be able to establish
a correspondence between the vocal characteristics, in order
to authenticate or identify the user. If a user is new, the system
must provide to allocate in memory all the features extracted
by the new user and create a new model for the speaker in
order to make possible a future test phase.

All the salient passages of the speaker recognition procedure
are summarized in the block diagram shown in Figure 2.
Generally, an ASR system consists of:

• a set of sensors (microphones) which make the acquisi-
tion of data and its subsequent sampling;

• the extraction of the peculiar characteristics (feature ex-
traction), possibly after simple preprocessing techniques;

• the generation of a specific template for each speaker;
• a data-base where all user templates are loaded;
• a comparison (verification) procedure, that determines

which profile matches the generated template of the test
speech.
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Fig. 2. A typical ASR system.

A. Feature Extraction

Several sets of features are demonstrated to be valid in order
to well recognize a speaker, but the most robust set, considered
in this paper, is represented by the Mel-Frequency Cepstrum
Coefficients (MFCC) [17], [18]. The whole feature extraction
procedure for the MFCC coefficients, is graphically shown in
Figure 3 and deeply described in the following.

Speech Blocking Windowing FFT

Mel Filter 

Bank
CepstrumDCTMFCC

Fig. 3. A typical feature extraction procedure.

In order to perform the Fourier Transform, via the FFT
algorithm [19], the speech signal recorded by the microphone
arrays, is blocked in frames of 256 samples with an overlap of
128 samples. Then a windowing operation, using a Hamming
window, is performed to reduce the Gibss phenomenon.

Psychoacoustic studies [20]–[22] have shown that the mind
of perception of the frequency content, over 1 kHz, follows
a nearly logarithmic scale. In this way it was introduced the
Mel scale, as

mel(f) =

{
f, if f ≤ 1 kHz

2595 log
(
1 + f

700

)
, if f > 1 kHz

(1)

and shown in Figure 4. Then the signal is filtered in the
frequency domain with a filter bank constructed in the Mel
scale, for which the pitches are judged to be equally distant
from one other. This filter bank is called Mel Filter Bank. The
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Fig. 4. The Mel scale of frequency.

cepstrum xc[n] is defined as the inverse Fourier transform of
the logarithm of the spectrum of a signal x[n] [19]

xc[n] = FFT−1 {log |FFT {x[n]}|} . (2)

The cepstrum transforms the signal from the frequency domain
to the quefrency domain.

After evaluating the energy Xn of the cepstrum of a speech
signal in the mel domain, the MFCC coefficients are estimated
through the P -point Discrete Cosine Transform (DCT), by

ck =

P−1∑
n=0

Xn cos

[
k

(
n+

1

2

)
π

P

]
, k = 0, 1, . . . ,K−1 (3)

The spectral envelope is then rebuilt with the first Km < K:

C(mel) =

Km∑
k=0

ck cos

(
2πk

mel

Bm

)
, (4)

where Bm is the bandwidth analyzed in Mel domain and
Km = 20 is a typical value.

B. Classification

In general terms, the problem of ASR belongs to the branch
of pattern recognition [23]. The purpose of pattern recognition
is to classify given objects into a number of classes. In the case
of an ASR, patterns are the vectors ck of MFCC coefficients,
while the classes are each single speaker. The classification is
performed by the features extracted from each speech signal.

It is necessary to convert data from the high-dimensional
input space, into a new space of smaller dimension, consisting
of small discrete points. The vector quantization (VQ) is the
problem of the discretization of a vector space [24]. The
quantization of a vector space allows to treat a limited number
of data, and associating the points of a region of the input
space to a single reference vector. This certainly introduces an
error that can be minimized with an appropriate arrangement
of all reference vectors. Therefore, a VQ algorithm has the task
of determining the best arrangement of the reference vectors
with respect to the optimization of a criterion that can be,
for example, the reduction of the mean square distance of
the points of these vectors. Therefore the objective of VQ is

to reduce the size of a database in an efficient manner, i.e.
such as to limit the loss of information [25]. To accomplish
this task, the VQ algorithm divides the space into continuous
regions, called Voronoi regions, and all observations belonging
to a region (cluster) are made to coincide in a single point
said centroid. The goal is to identify a set of centroids with
appropriate characteristics, in reduced number compared to
the cardinality of the input space and with reduced loss of
information. Each centroid is called codeword, and in the case
of speaker recognition, each speaker can be recognized based
on the location of its codeword. The set of codewords forms
a codebook that characterizes each speaker. An example of
Voronoi regions and codewords is shown in Figure 5.

Voronoi Regions

Vectors
Codewords

Fig. 5. The Voronoi regions.

The vector quantization associates to each vector x in the K-
dimensional input space, one of the Q (with Q << K) vectors
c = [c1, c2, . . . , cQ] that forms the codebook. Conversely, to
each codeword ci it is associated the i-th Voronoi region Si,
whose points satisfy the condition

Si =
{
x ∈ RK : ‖x− ci‖ ≤ ‖x− cj‖ , ∀j 6= i

}
. (5)

The training of the codebook is performed by the LBG
algorithm proposed in [26].

III. BLIND SOURCE SEPARATION

Let us consider a set of N unknown and independent
sources s(n) = [s1(n), . . . , sN (n)]T , such that the compo-
nents si(n) are zero-mean and mutually independent. Signals
received by an array of M sensors are denoted by x(n) =
[x1(n), . . . , xM (n)]T and are called mixtures. For simplicity
we consider the case of N =M .

The convolutive model introduces the following relation
between the i-th mixed signal and the original source signals

xi (n) =

N∑
j=1

K−1∑
k=0

aij (k)sj (n− k) , i = 1, . . . ,M (6)

The mixed signal is a linear mixture of filtered versions of
the source signals, aij(k) represents the k-th mixing filter
coefficient and K is the number of filter taps. The task is to



estimate the independent components from the observations
without resort to a priori knowledge about the mixing system
and obtaining an estimate u(n) of the original source vector
s(n):

ui (n) =

M∑
j=1

L−1∑
l=0

wij (l)xj (n− l) , i = 1, . . . , N (7)

where wij(l) denotes the l-th mixing filter coefficient and L
is the number of filter taps.

When a mixing environment is quite complex, filters of the
ICA network may require thousands of taps to appropriately
invert the mixing. In such cases, the time domain methods have
a large computational load to compute convolution of long
filters and are expensive for updating filter coefficients. The
methods can be implemented in the frequency domain using
the Fast Fourier Transform (FFT) [19] in order to decrease the
computational load because the convolution operation in the
time domain can be performed by element-wise multiplication
in the frequency domain. Note that the convolutive mixtures
can be expressed as

x (f, k) = A (f) s (f, k) , ∀f (8)

where x(f, k) and s(f, k) are the frequency components
of mixtures and the independent sources at frequency f ,
respectively. A(f) denotes a matrix containing elements of the
frequency transforms of mixing filters at frequency f . From
(8), it is clear that convolutive mixtures can be represented by
a set of instantaneous mixtures in the frequency domain. Thus,
the independent components can be recovered by applying
ICA for instantaneous mixtures at each frequency bin and then
transforming the results in the time domain:

u (f, k) = W (f)x (f, k) , ∀f (9)

where W(f) denotes the demixing matrix in the frequency
domain. Note that s(f, k), x(f, k) and u(f, k) are vectors of
complex elements.

Usually some preliminary preprocessing steps are required
in order to simplify the identification of the demixing matrix.
The first one preprocessing step is simply the mean value re-
moving or centering. The second step is a canonical whitening
preprocessing x̃ = Qx, where Q is an orthogonal matrix, in
order to obtain an identity correlation matrix E

{
x̃x̃H

}
= I.

In the following we suppose that centering and whitening
preprocessing are always performed, so we simply denote the
whitened mixtures x̃ with x.

In order to solve the BSS in the convolutive environment
Bingham & Hyvarinen in [27] have proposed a complex-
valued version of the well-know and best performing FastICA
algorithm introduced in [28], [29]. The k-th column wk of
the W(f) matrix is obtained by maximizing an approximation
G
(∣∣wH

k x
∣∣) of the negentropy function [7], where G(·) is a

suitable non-quadratic function, as in the following optimiza-
tion problem

argmax
wk

G
(∣∣wH

k x
∣∣)

s.t. ‖wk‖2 = 1
(10)

The constraint in the previous problem is needed in order to
avoid the trivial null solution. The solution of (10), can be
obtained by the following fixed-point iterations [27]

w+
k = E

{
x(wH

k x)∗g(
∣∣wH

k x
∣∣2)}

− E
{
g(
∣∣wH

k x
∣∣2) + ∣∣wH

k x
∣∣2 g′(∣∣wH

k x
∣∣2)}wk, (11)

wk =
w+
k∥∥w+
k

∥∥ , (12)

where g(·) is the derivative of G(·) and g′(·) its second
derivative. We adopt the following function g(y) = 1/(y+a),
with a a constant value, usually set to a = 0.1. Note that it is
necessary to choose no learning rates in this algorithm.

Unfortunately, the two scaling and permutation ambiguities
of the ICA algorithms results in a undesired and fastidious
distorted reconstructed signals, after applying eqs. (11) and
(12). This kind of distortions can be hugely reduced using
some particular constraints on the learning algorithm.

A. Geometrical Constraints

In order to overcome the ICA ambiguities and reduce the
undesired distortions, [15] proposed a geometrical approach
to ICA, using the hint that frequency-domain blind source
separation is equivalent to a set of frequency-domain adaptive
beamformers (ABFs) under certain conditions.

Since the equivalence of the FD-ICA and FD-ABF de-
scribed in [30], the k-th demixing vector wk has to be
constrained as follows

wH
k ĥk (f) = c. (13)

The estimated steering vector ĥk(f), since the true impulse
response is not available, is evaluated solely from the time
delays of the direct sound, hence, for each bin f , has the
form

ĥk (f) =


1

e−j2π
d
c f cos θ̂k

...
e−j2π(N−1)

d
c f cos θ̂k

 , (14)

where d is the distance between microphones, c the sound
speed and θ̂k is the direction of arrival (DOA) estimated by a
beamformer. Figure 6 describes the geometry of the sources
and the microphone array. Because we are interested only in
the direction of the demixing vector wk and not to its norm,
we project this solution to the constraint in (13), thus the
resulting new optimization problem is solved by substituting
the normalization in (12) by the following one:

wk =
w+
k∥∥∥w+

k ĥk

∥∥∥ . (15)

Unfortunately, at low frequencies a certain number of permu-
tations still occur. In order to overcome the previous problem
at low frequencies, a DOA estimation is performed. Such
estimation is done analyzing the directional patterns which
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Fig. 6. Assumptions on microphones and sources geometry: Mj is the j-th
microphone while Sk is the k-th source.

allow us to associate a single source to a local minimum, as
described in [31].

The k-th directional pattern can be expressed, for the non-
restrictive case of N = 2 sources and M = 2 microphones,
as follows

Fk(f, θ) =

2∑
l=1

Wkl(f) exp

[
j2πfd sin θ

c

]
, (16)

where c is the sound speed, d is the distance between mi-
crophones and Wkl(f) is the l-th entry of the wk column
vector. These directional patterns have a minimum value in
correspondence of an estimated disturbing source [31]. In
particular the two source directions are evaluated as

θ1(f) = min

[
argmin

θ
|F1 (f, θ)| , argmin

θ
|F2 (f, θ)|

]
,

θ2(f) = max

[
argmin

θ
|F1 (f, θ)| , argmin

θ
|F2 (f, θ)|

]
.

(17)

Assuming that the minimum value of the pattern F1(fk, θ) is
θ2 for the k-th frequency bin fk, if for another frequency bin
fj the minimum value is θ1, then a permutations occurred and
the filter coefficients must be swapped. In addition the value of
the directional pattern in correspondence of the source, can be
used as scaling factor in order to solve the scaling ambiguity.
An optional beamformer can be used for the evaluation of
the directions θ̂1 and θ̂2. The use of the directional patterns
allows us to solve both the permutation and scaling ambiguity:
the patterns decide to choose the ICA solution or a swapped
one, if a permutation occurs. Then a generalization for N > 2
sources can be easily derived.

The whole BSS system implementing the geometrically
constraint is shown in Figure 7.
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Fig. 7. BSS system using geometrical constraint and directional pattern in
the case of N = M = 2.

IV. EXPERIMENTAL RESULTS

In order to verify the effectiveness of the proposed approach,
we have performed several experimental test in different noisy
conditions. We have imaged that the proposed system is posed
in a standard room of dimensions 5×4×3 m, and the speaker
to be recognized is located in front of the ASR system and very
close to it. The noisy source is randomly posed in the range
1÷ 3 m from the microphone array and an angle θ1 ∈ [10÷
170]◦. Then a mean over 100 separate tests are performed.
The experimental set-up is shown in Figure 8.
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Fig. 8. Experimental set-up used in this paper.

The performances of the proposed architecture are evaluated
in terms of Accuracy (Acc), False Rejection Rate (FRR) and
False Identification Rate (FIR), defined by:

Acc =
NTR
NT

, FRR =
NFR
NT

, F IR =
NFI
NT

, (18)

where NT is the total number of performed tests, NTR is the
number of true recognized speakers, NFR is the number of
speakers not recognized, and NFI is the number of speakers
recognized but associated to another identity.

To validate the proposed approach a background noise with
different Signal to Noise Ratio (SNR) in the range [∞, −10]
dB, is added to the present speaker signal. This background
noise compromises the performance of the traditional ASR
system. When the SNR is high, the accuracies of the traditional
and proposed systems are comparable, but when SNR is
very low, the accuracy of the standard ASR system is poor,
while FRR and FIR is increasing. Using instead the BSS
preprocessing step, the proposed system is able to guarantee
an acceptable accuracy, even in the presence of a very strong
background noise, as shown by results, whose summary can
be found in Table I and graphically shown in Figure 9.

V. CONCLUSIONS

In this paper we have introduced a preprocessing procedure
to enhance the accuracy of a standard ASR system in noisy
environment. This step is consisting in a frequency-domain
ICA algorithm, performing source separation at microphone
array. In order to avoid ambiguities of standard ICA algo-
rithms, a geometric constraint is added. Hence a conventional



SNR With BSS Without BSS
[dB] Acc [%] FRR [%] FIR [%] Acc [%] FRR [%] FIR [%]

∞ 96.2 0.3 3.5 96.2 0.3 3.5
30 91.2 0.6 8.2 62.6 1.9 35.5
20 90.6 0.8 8.6 54.5 3.4 42.1
15 90.0 1.0 9.0 42.4 6.3 51.3
10 89.8 1.1 9.1 31.2 10.1 58.7
5 87.8 2.0 10.2 24.0 15.5 60.5
0 85.3 2.9 11.8 12.8 58.2 29.0
-3 84.5 3.3 12.2 9.3 55.5 35.2
-10 82.9 7.0 10.1 2.3 96.0 1.7

TABLE I
SUMMARY OF THE ACCURACY, FRR AND FIR, FOR THE PROPOSED

APPROACH WITH AND WITHOUT THE PREPROCESSING BSS ALGORITHM.
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Fig. 9. Accuracy of the proposed approach with and without the preprocess-
ing BSS algorithm at different SNR values.

ASR algorithm based on MFCC coefficients classification is
adopted.

Some experimental results show the effectiveness of the
proposed approach in terms of accuracy reached by the whole
system, and its robustness with respect additive background
noise.
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