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ABSTRACT 
 
We discuss an electro-optical device that acts as a multifunction logical gate based on a BSO photorefractive crystal. It 
is an easily re-configurable device which can perform different logic functions such as AND, OR, NOT, NOR using the 
same configuration and changing only the controlling parameters. 
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1. INTRODUCTION 
 
Lights is very useful to perform high speed all-optical operations1. Different techniques and systems have been proposed 
but the resulting devices are generally mono-function, that is they are capable of performing only one operation that can 
be logical, arithmetical, or other. 
In this paper we show how it is possible to use a BSO photorefractive crystal to design a multifunction logical gate, that 
is a re-configurable device which can perform different logic functions such as AND, OR, NOT, NOR using the same 
configuration and changing only the controlling parameters. 
BSO crystals show the interesting property of supporting soliton-like propagation at really low light intensities (few 
mW). Main feature of this material is the strong optical activity, responsible for energy exchange between polarisations 
during propagation2. It has been demonstrated2,3 that a nonlinear regime can be reached for which this polarisation 
rotation can be externally controlled. This occurs because to obtain solitons the BSO crystal must be uniformly enlighten 
with a background beam boI  and biased by a static transversal electrical field 

0E . The solitonic beam inI  entering the 

crystal experiences a nonlinear rotation of its polarisation, in the sense that its rotation velocity can be controlled and 
modified by the background intensity boI , by the electrical field 0E , and by its own intensity too. The operating 

geometry is shown in fig.1. 

Fig.1 Considered disposition of the components. 
 
With a BSO crystal whose length is well defined, it is possible to control the intensity of the two output polarisations 
acting on the background beam, on the electrical field and on the intensity of the input beam, obtaining full signal 
condition (logic one) or absence of signal (logical zero) as a function of the intensity resulting by the superposition of 
two ore more input beams that act on the main beam or on the background beam. 



  

The operation of the device is discussed in the following and it is studied from the numerical point of view showing its 
peculiar features of multifunction logic gate. 
 

2. PROPERTIES OF BSO CRYSTAL 
 
Anisotropic crystals show two autosolutions for the propagation of two different polarisations each of them 
characterised by a refractive index (birefringence)4. 
BSO ( 2012SiOB ) is a crystal characterised by a high optical activity, that makes it able to rotate the direction of 

polarisation of an electromagnetic wave that propagates in it according to certain directions. It shows a circular 
anisotropy5-9. 
The rotation power ρ of BSO is equal to 38.6°/mm at the wavelength of 514.4 nm. 
Let us consider the propagation of a laser beam whose intensity is I(x,z) in a BSO crystal that is subjected to a transverse 
constant electrical field 0E  generated through an external voltage V and that is uniformly enlighten by means of a 

background beam whose intensity is equal to boI  and whose propagation direction is inclinated with respect to the main 

beam to avoid to be revealed by the light detector, as shown in fig.1. 
The crystal is cut in such a way that the main beam propagates along the [-1 0 0] (z axes) crystallographic direction and 
it is free of diffracting along x axes ([0 0 -1]). The external electrical field 0E  is applied along the same direction. 

To derive the equations of propagation it is necessary to start from the Helmholtz equation that describes the 
propagation of the electric field E of the wave in the material: 
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 from the following dispersion relation, that is valid in the presence of slowly varying amplitude and in a lossless 
material: 
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where rε~∆  represents the variation of the dielectric tensor due to the Pockels effect and g
r

 is the rotation vector of the 

BSO. If 0E  is the ratio between the external potential V and the transversal dimension W in the x direction, the space 

charge field generated by the diffusion of the carrier in the less enlighten zones in stationary conditions can be 
approximated as: 
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The space charge field produces, through the Pockels effect, a variation of dielectric constant: 
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where SC

kijkij Er=∆η , being ijkr the electrooptical coefficient of the material. In the considered geometry, eq.(4) becomes: 
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Using eq.(5), equation (2) can be written as: 
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 is a vector directed along the propagation direction of the beam. 

If we look for a solution of the Helmholtz equation of the kind: 
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Substituting eq.(8) into eq.(1) and using the slowly varying envelope approximation we obtain the equations of 
propagation for both the yx AA ,  components of the field: 
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Eqs.(9) are two coupled equations for the amplitudes yx AA , . 

Due to the presence of terms depending on the optical activity of the crystal the velocity of rotation of the polarisations 
strictly depend on the external electrical field 0E  and on the ratio between the intensity of the beam I(x,y) and the 

intensity of the background beam boI . 

 
3. NUMERICAL SIMULATIONS 

 
The equations of propagation (9) have been numerically solved using a FD-BMP algorithm. 
In figs.2 the numerical simulations of x polarisation for different values of the external field are shown. The spatial 
pulsations during the propagation are due to the energy exchange between x and y polarisations: it is possible to see that 
the velocity of rotation of the polarisation increases with the increase of the external electrical field, that is the higher the 
external field the shorter the oscillation period is with propagation. The propagation length has been considered to be 
equal to 8 mm while the peak intensity of the beam is equal to 5.8 W/cm2. 
Different numerical simulations were made to obtain the output intensity of x polarisations as a function of the ratio 
between the maximum intensity MI  of the beam I(x,y) (that is considered to be gaussian) and the intensity of the 

background beam boI  for different values of the electrical field 0E . Since the ratio between the two intensities can be 

varied keeping alternatively one of the two intensities constant, both situations have been considered. 
 

        (a)           (b) 



  

 
 
 

        (c)           (d) 
Figs.2 Longitudinal view of the numerical simulations of X polarisation for different values of the external electrical field: the higher 

the field the shorter the oscillation period of the beam. The propagation length has been considered to be equal to 8 mm while the 
peak intensity of the beam is equal to 5.8 W/cm2. 

 
In fig.3 it is shown the output intensity of x polarisation as a function of the ratio between the maximum intensity MI  of 

the beam I(x,y) and the intensity of the background beam boI  for different values of the electrical field 0E  keeping boI  

constant while the situation where MI  is constant is shown in fig.4. In both cases we obtain output curves that are 

characterised by a nonlinear behaviour as a function of the ratio between the two intensities, that can be properly used 
for our purposes, as we will show later. 
 
 

 
Fig.3 Mean output intensity of X polarisation as a function of the ratio between the maximum intensity MI  of the input beam and the 

intensity of the background beam boI  for different values of the electrical field 0E . The intensity of the background beam boI  is 

constant and it is equal to 5.8 W/cm2. 



  

 

 
 

Fig.4 Mean output intensity of X polarisation as a function of the ratio between the intensity of the background beam boI  and the 

maximum intensity MI  of the input beam for different values of the electrical field 0E . The intensity of the input beam MI  is 

constant and it is equal to 5.8 W/cm2. 
 

4. IMPLEMENTATION OF THE LOGICAL GATES 
 
Thank to the great variability of the output intensity of x polarisation as a function of the ratio between the two input 
intensities, it is possible to use the proposed configuration to realise optical multifunction logical gates that are easily 
configurable to change their function. 
Given the disposition shown in fig.1, it is possible to act on MI  and Ib0 or on the external electrical field to generate 

proper output values of the x polarisation. The external field is used to modulate the response of the output intensity 
curve of x polarisation, while both the inputs MI  and Ib0 can be used, keeping the other one constant, as input of two 

logic variables A and B that are summed by the intensity point of view. The logic variables can assume two values that 
are low level=0 or high level=‘signal’, or briefly ‘sign.’ 
The low level correspond to the logical zero and the signal level correspond to the logical one. 
 

5. LOGICAL GATES WITH CONSTANT BACKGROUND 
 
Keeping Ib0 constant, it is possible to use IM as input of both the logic variables A and B, using a proper bias beam, to 
obtain an OR gate that gives as output a high value when one or both the inputs are high and an output equal to a low 
value when both the inputs are equal to zero, as shown in table 1. The operative curve is shown in fig.5. 



  

 
 

Input parameters A=0, B=0 A=0, B=1(Sign.) A=1(Sign.), B=0 A=1(Sign.), B=1(Sign.) 
IM Bias Bias+Sign. Bias+Sign. Bias+2xSign. 

Logical outputs 0 1 1 1 
Table 1 Operative behaviour of the OR gate with Ib0 constant. 

 

 
Fig.5 Operative curve of OR gate with Ib0 constant. The parameters of configuration of the gate are E0 =40 kV/cm, bias=0.1 Ib0, 

signal = 1.15 Ib0. 
 

6. LOGICAL GATES WITH CONSTANT MAIN BEAM 
 
Keeping IM constant, it is possible to use Ib0 as input of both the logic variables A and B, using a proper bias beam, to 
obtain a NOR gate that gives as output a low value when one or both the inputs are high and an output equal to a high 
value when both the inputs are equal to zero, as shown in table 2. The operative curves are shown in figs.6. 
 
 

Input parameters A=0, B=0 A=0, B=1(Sign.) A=1(Sign.), B=0 A=1(Sign.), B=1(Sign.) 
Ib0 Bias Bias+Sign. Bias+Sign. Bias+2xSign. 

Logical outputs 1 0 0 0 
Table 2 Operative behaviour of the NOR gate with IM constant. 

 
 
 



  

 

 
 
Fig.6a Operative curve of NOR gate with IM constant. The parameters of configuration of the gate are E0 =27.5 kV/cm, bias=0.1 IM, 

signal = 0.7 IM. 

 

 
Fig.6b Operative curve of NOR gate with IM constant. The parameters of configuration of the gate are E0 =40 kV/cm, bias=0.1 IM, 

signal = 0.25 IM. 
 
It is also possible to obtain an AND gate that gives as output a high value when both the inputs are high and an output 
equal to a low value when one or both the inputs are equal to zero, as shown in table 3. The operative curve is shown in 
fig.7. 



  

Input parameters A=0, B=0 A=0, B=1(Sign.) A=1(Sign.), B=0 A=1(Sign.), B=1(Sign.) 
Ib0 Bias Bias+Sign. Bias+Sign. Bias+2xSign. 

Logical outputs 0 0 0 1 
Table 3 Operative behaviour of the AND gate with IM constant. 

 

 
Fig.7 Operative curve of AND gate with IM constant. The parameters of configuration of the gate are E0 =27.5 kV/cm, bias=0.6 IM, 

signal = 1.25 IM. 
 
It is also possible to obtain a NOT gate that gives as output a high value when the input is high and an output equal to a 
low value when the input is equal to zero, as shown in table 4. The operative curves are shown in figs.8. 
 

Input parameter A=0 A=1(Sign.) 
Ib0 Bias Bias+Sign. 

Logical outputs 1 0 
Table 4 Operative behaviour of the NOT gate with IM constant. 

 

 
Fig.8a Operative curve of NOT gate with IM constant. The parameters of configuration of the gate are E0 =27.5 kV/cm, bias=0.1 IM, 

signal = 0.9 IM. 



  

 
Fig.8b Operative curve of NOT gate with IM constant. The parameters of configuration of the gate are E0 =40 kV/cm, bias=0.1 IM, 

signal = 0.4 IM. 
 
It is also possible to obtain an OR gate that gives as output a high value when one or both the inputs are high and an 
output equal to a low value when both the inputs are equal to zero, as shown in table 5. The operative curve is shown in 
fig.9. 
 

Input parameters A=0, B=0 A=0, B=1(Sign.) A=1(Sign.), B=0 A=1(Sign.), B=1(Sign.) 
Ib0 Bias Bias+Sign. Bias+Sign. Bias+2xSign. 

Logical outputs 0 1 1 1 
Table 5 Operative behaviour of the OR gate with IM constant. 

 

 
Fig.9 Operative curve of OR gate with IM constant. The parameters of configuration of the gate are E0 =40 kV/cm, bias=0.4 IM, signal 

= 0.9 IM. 



  

 
7. TEMPORAL BEHAVIOUR OF THE DEVICE 

 
All the equations derived in this paper are considered in a stationary situation, that is reached in a time interval that is 
inversely proportional to the intensity of the input beam. 
Using intensities of the order of a few 2cmW  the time interval is of the order of 50-100 µsec. Intensities of the order 

of 3 2cmWk  give time intervals of the order of 10 µsec, that are competitive with the electronic velocities. 

Since the carrier profile generated by the writing light beam tends to survive for a certain time after that the beam is 
switched off, it is necessary to delete it using a uniform beam that enlightens the crystal for a time that is almost equal to 
the time of the writing beam. 
Therefore, for this kind of application, it is necessary to use a quite high intensity level, to shorten the switching time, 
and an erasing beam to clean the crystal from the carriers. 
 

8. CONCLUSIONS 
 
We presented and designed an electro optical logical gate, based on the properties of propagation of light beams in BSO 
crystals.  
 
The device is easily configurable to perform different logical functions such as AND, OR, NOT, NOR without 
variations of the operative time. 
The operative velocity is limited by the response time of the photorefractive material and it can be properly increased 
using appropriate intensity level of the beams. 
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