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Abstract

A device that allows to pass only a soliton beam characterized by an intensity greater than a certain threshold is
presented. The device acts as a high pass filter. It is even a useful demultiplexer since beams with amplitude below threshold
are expelled from the device with an angle that depends on their intensity. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

There is a growing interest in optical solitons for
applications in all-optical processing. Spatial solitons are
self-trapped optical beams that propagate without changing
their spatial shape, since the diffraction and the nonlinear
refraction balance each other in a self-focusing medium
w x1 .

Recently a new generation of spatial optical switches
has been proposed that uses the interaction between two
bright or dark soliton beams, and waveguide structures that

w xare induced by these interactions 2–8 . The initial condi-
tions, usually used for such interactions, have the form of
two distinct parallel solitons. It is well known that when
two distinct bright spatial solitons are launched parallel to
each other, the interaction force between them depends on

w xtheir relative distance and on their relative phase 9,10 .
Thanks to the peculiar properties of solitons, it has been

possible to design a variety of useful devices. One of the
most important features is their particle-like behaviour and
their relative robustness to external disturbances. This
allows one to address a soliton, in the presence of a
transverse refractive index variation, towards a fixed path,
since the index variation acts as a perturbation against
which the soliton reacts as a particle, moving as a packet
without any loss of energy.

In this paper we study the behaviour of a soliton beam
in a waveguide which, in the plane between the cladding
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and the substrate, has a distribution of refractive index that
Žfollows a trapezoidal curve we call it trapezoidal wave-

.guide , considering the possibility that the soliton propa-
gates in an oblique direction.

The theory begins with the study of the transverse
behaviour of a soliton in a trapezoidal profile, whose
longitudinal axis is parallel to the propagation direction of
the beam. Once the expression of the acceleration is
derived, we investigate the situation characterized by some
angular tilt between the soliton propagation direction and
the waveguide axis, which is the goal of this paper.

2. Transverse effect of a soliton beam in a trapezoidal
shaped refractive index profile

Interesting effects have been found in the study of
transverse effects of soliton propagation at the interface

w xbetween two nonlinear materials 11–13 or in a material
in the presence of a Gaussian refractive index profile, that

w xis in low perturbation regime 14 .
Here we focus our attention on a trapezoidal index

profile for two main reasons. The first reason is that this
kind of profile approximates very well the profile of a
channel waveguide produced by an ion-exchange process
which is characterized by a constant index in the central
zone and a quasi-linear slope index in the lateral sides, due
to transverse ion diffusion effects. The second reason is
that the soliton, when is positioned in a linear index
gradient, is subject to a constant acceleration, as we will
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show, which greatly simplifies the development of the
theory.

We consider a transverse refractive index profile
Ž .Dn x of the kind:0

0, x-yb°
Dn Dn0 0

xq b , ybFx-ya
bya bya~ Dn , yaFxFaDn x s 1Ž . Ž .00

Dn Dn0 0
y xq b , a-xFb

bya bya¢
0, x)b

where 2b is the total waveguide width, 2 a is the width of
the central constant index profile region, Dn is the maxi-0

Ž .mum index variation. The profile expressed by Eq. 1 is
shown in Fig. 1.

Since we are studying a soliton beam, the expression of
the field Q at the beginning of the structure is:

w xQ x ,0 sC sech C xyx , 2Ž . Ž . Ž .
where x is the position of the centre of the beam and C is
a real constant from which both the width and the ampli-
tude of the field depend.

Due to the anti-symmetric nature of the structure we
derive the theory when the beam is positioned on the left
side of the waveguide, being only necessary to change the
sign of the obtained acceleration, when the beam is posi-
tioned on the other side.

w xIt is possible to demonstrate 15,16 that when the
soliton beam is positioned in a ramp potential it is subject
to a transverse acceleration that depends on its amplitude
C. In our case we have:

2Dn0 2a s C . 3Ž .T bya

The above expression for the acceleration shows two
interesting properties: it does not depend on the position x
of the beam inside the considered region and it depends on
the square of input amplitude C. This last property implies

Fig. 1. Section of the ideal trapezoidal refractive index profile
waveguide.

that different amplitude beams are subject to different
transverse accelerations.

We also suppose that the extension of the lateral side of
the waveguide is wider than the soliton width, to reduce to
a minimum the effect of the discontinuity of acceleration
due to the refractive index variation at the beginning and at
the end of the lateral zone. This is equivalent to say that
b4C.

3. Transverse effect in an oblique waveguide

We now extend the results obtained in the previous
section to the case of a longitudinal inclined waveguide
with respect to the soliton propagation direction.

We consider, without any loss of generality, a wave-
guide characterized by only two lateral sides, without the
central part characterized by a constant refractive index
and therefore by an acceleration equal to zero. In this way
the acceleration is always different from zero inside the
waveguide.

It is very useful to use a dynamic point of view to study
this situation, that is to consider the step by step transverse
relative position of the waveguide with respect to the
beam, using the z variable as a time parameter. Under
these conditions, the inclination angle a of the waveguide
with respect to the longitudinal axis z can be regarded as
the transverse velocity of the waveguide:

d x zŽ .G
Õ s s tan a , 4Ž .G d z

Ž .where x z is the position of the central part of theG
Ž .waveguide profile with respect to z. From Eq. 4 it is

possible to derive x asG

z
x s Õ dzsÕ z , 5Ž .HG G G

0

Ž .x z is the position of the centre of the waveguide as aG

function of z.
The same procedure can be applied for the transverse

Ž .velocity and the position of the beam using Eq. 3 :

2Dnz 0 2Õ s a dzs C z , 6aŽ .HB T b0

Dnz 0 2 2x s Õ dzs C z . 6bŽ .HB B b0

Let us consider the initial condition of the beam positioned
in the centre of the waveguide. At the beginning of
propagation, since the waveguide moves with a constant
velocity Õ , the soliton beam enters in the constant accel-G

eration zone, where it acquires a velocity linearly increas-
Ž .ing with z, according to Eq. 6a . This process continues

until the beam remains in this part of the waveguide.
After a certain propagation distance two different situa-

tions may occur: the beam leaves the acceleration zone
without reaching the velocity Õ of the waveguide or theG
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beam acquires a velocity that is greater than or equal to the
velocity Õ of the waveguide. We call the first eventG

‘detach situation’, since the beam leaves the waveguide
with a certain velocity, and therefore a certain angle, that
is smaller than the angle of the waveguide. We call the
second event ‘lock-in situation’ since the beam reaches the
other side of the waveguide where it is stopped, reversing
again the situation and so on, but it remains locked inside
the waveguide. Considering the situation at general z, as
shown in Fig. 2, if we calculate the distance d betweenGB

the waveguide centre and the beam:

Dn C 2
0 2d sx yx sÕ zy z . 7Ž .GB G B G b

The detach condition is obtained when

d sb. 8Ž .BG

Ž .Solving Eq. 8 with respect to z, it is possible to calcu-
late, if it exists, the propagation distance z at which theD

detachment starts:

1r22 2 2 2Õ b" Õ b y4Dn b CŽ .G G 0
z s . 9Ž .D 22Dn C0

ŽThe two solutions refer to the detach situation when the
.negative sign of the root is taken or to the first cross of

Žthe centre of the waveguide in the lock-in situation when
.the positive sign of the root is taken . Studying the dis-

Ž .criminant of Eq. 9 we can derive the value of the
amplitude C that divides the lock-in from the detach CD

values:

1r22ÕG
C s . 10Ž .D ž /4Dn0

The above equation demonstrates that high inclination
angles of the waveguide raise the amplitude values that
can be locked into the waveguide while high values of the
refractive index reduce the same values. This perfectly
agrees with what one could expect.

Fig. 2. Relative distance waveguide–soliton at some propagation
distance z.

Ž .Fig. 3. Detach angle F in degrees, equal to arctan Õ , versus CD
Ž .for Õ s0.224 waveguide inclination: 12.68 , Dn s0.05. TheG 0

detach value is C s0.5D

Ž . Ž .Substituting Eq. 9 into Eq. 6a it is possible to
calculate the detach velocity, that is the inclination accord-
ing to which a soliton, whose amplitude C is smaller than
C , leaves the waveguide:D

1r22 2Õ sÕ z sÕ y Õ y4Dn C . 11Ž . Ž .Ž .D B D G G 0

A typical detach angle distribution is shown in Fig. 3,
where Õ s0.224, corresponding to a waveguide inclina-G

tion of about 12.68, and Dn s0.05. With these values we0
Ž .have from Eq. 10 , C s0.5.D

The behaviour described above gives to the device a
secondary but very important property, that is the capabil-
ity of working as a demultiplexer controlled by the ampli-
tude of the input beam. For this purpose we develop some
other useful concepts.

If we know the point where the beam leaves the
waveguide, since the output angle is expressed by Eq.
Ž .11 , once the length L of the device is given, we can

Fig. 4. Position X of the beam at the end of the output of the
device as a function of the amplitude C. Õ s0.224, Dn s0.05,G 0

Ls100.
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immediately calculate, by means of geometrical considera-
tions, the output position of the beam in the device:

x sx q Lyz ÕŽ .0 BD D D

2b
2 2(s Õ y Õ y4Dn CG G 0ž /24Dn C0

=
4LDn C 2

0
y1 , 12Ž .

2 2ž /(b Õ y Õ y4Dn CG G 0ž /
where x is the transverse position of the beam when itBD

leaves the waveguide, that can be calculated substituting
Ž . Ž .Eq. 9 into Eq. 6b :

2b
2 2(x s Õ y Õ y4Dn C . 13Ž .BD G G 0ž /24Dn C0

In Fig. 4 a distribution of the output positions of the
Ž .device is shown, using Eq. 12 .

Different numerical simulations of this structure have
been performed, using a FD-BPM method and the results

Ž . Ž .Fig. 5. a Numerical simulation for Cs0.3 detach value , Õ s0.224, Dn s0.05, Ls100. The beam is expelled from the waveguide.G 0
Ž . Ž . Ž .b Numerical simulation for Cs0.4 detach value , Õ s0.224, Dn s0.05, Ls100. The beam is expelled from the waveguide. cG 0

Ž .Numerical simulation for Cs0.5 limit value , Õ s0.224, Dn s0.05, Ls100. The beam propagates along one side of the waveguide.G 0
Ž . Ž .d Numerical simulation for Cs0.6 lock-in value , Õ s0.224, Dn s0.05, Ls100. The beam is locked inside the waveguide.G 0
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Ž .Fig. 5 continued .

are shown in Fig. 5. The values used are Õ s0.224,G

Dn s0.05, Ls100, bs5. With these parameters the0

detach value was already calculated to be C s0.5. It isD

possible to see that all the beams whose amplitude is
below the detach value are expelled from the waveguide

Ž .according to an angle that can be calculated from Eq. 11 .
The beam whose amplitude is exactly equal to the detach
value propagates on one side of the waveguide, while
higher amplitude beams are locked-in. The situation is
summarized in Fig. 6 where the position of the waveguide
superimposed to the mean position of the beams obtained
from numerical simulations is shown. The results perfectly
agree with the above developed theory. It is important to
note that, due to the particle behaviour of the soliton beam,

we have a full power transfer from input to output in both
cases of detaching or locking, when other disturbing fac-
tors such as scattering, absorption are not considered.

We can see that the lock-in value C of the amplitude,D
Ž .expressed by Eq. 10 , does not depend on the waveguide

length L: this is a direct result of the absence of restric-
tions about L. In a practical situation it is possible that
given a certain waveguide, with some length L, we obtain
a lock-in value C , whose detachment distance z , fromD D

Ž .Eq. 9 , results to be longer than L. In this case it is
obvious that, due to the restriction imposed by the wave-
guide length L, the detach value C decreases. In fact,D

even if the lower values of amplitude tend to be expelled
from the waveguide, the expulsion takes place at a distance
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Fig. 6. Upper view of the trajectories of soliton beams obtained
Žfrom numerical simulations. Õ s0.224 waveguide inclination:G

.12.68 , Dn s0.05, Ls100. The oblique lines represent the sides0

of the waveguide. The beams characterized by a detach amplitude
Ž .C-0.5 are expelled, the beams characterized by a limit ampli-

Ž .tude Cs0.5 propagate along one side of the waveguide, the
Ž .beams characterized by a lock-in amplitude C)0.5 are locked

inside the waveguide.

that is longer than the waveguide and the beam remains
trapped. The lower value C can be calculated from Eq.DL
Ž .9 setting z sL and solving with respect to C:D

1r22b LÕ ybG
C s . 14Ž .DL ž /L Dn0

4. A numerical example

We want now to consider a numerical situation.
We consider a beam with full width at half height d .0

w xThe intensity necessary to generate a soliton is 17 :

2n0
I s , 15Ž .s 2 2d n b0 2

where b is the wavevector of the beam, and n , n are the0 2

linear and nonlinear refractive indices of the medium
respectively. The intensity threshold to have a second-order
soliton is I Ž2.s4 I . This has always to be taken in mind.s s

It is possible to demonstrate, through some algebra, that
Ž .in a profile C sech Cx the parameters d and C are linked0

by the relation:

2 'bd s log 2q 3 , 16Ž .Ž .0 C

Ž . Ž .Substituting Eq. 16 into Eq. 15 and solving with respect
to I , we obtain:s

1 n0 2I s C , 17Ž .s 2 2n' 2log 2q 3Ž .
that can be substituted into all the expressions obtained as

a function of amplitude C, to convert them into expres-
sions as function of intensity I .s

Suppose now to have a Kerr material such as a Schott
w xB270 glass 15 , whose typical optical parameters at l s0

620 nm are n s1.53 and n s3.4=10y20 m2rW. The0 2

spot size of the beam is d s10 mm. The physical param-0

eters of the waveguide are: Õ s6=10y4, correspondingG

to an inclination of about 3.44=10y2
8, a waveguide side

bs10 mm and a waveguide length Ls5 cm. If we
choose, for example, Dn s10y4, we can calculate, sub-0

Ž . Ž .stituting Eq. 10 into Eq. 17 , the lock-in intensity that
16 2 Ž .gives I s1.16=10 Wrm . Using Eq. 15 it is possi-D

ble to calculate the minimum intensity that is necessary to
generate a fundamental soliton, that is I s3.7=1015

s

Wrm2. Since I (3.13 I , if the waveguide would beD s

longer than the lock-in distance, that has not been yet
calculated, all solitons whose intensity is below 3.13 times
I are expelled, while the other ones whose intensity iss

Žgreater than I and less than 4 I s1.27I second orderD s D
.soliton generation are locked-in. The lock-in distance can

Ž .be calculated substituting the numerical values into Eq. 9
that gives z s2.88 cm, that is a distance shorter than theD

Ž .Fig. 7. a Detach distance as a function of the input intensity
Ž .without absorption. b Detach distance as a function of the input

intensity for an absorption coefficient equal to 30 dBrm.
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waveguide length Ls5 cm. Using therefore this wave-
guide the demultiplexing effect is present too. The ex-
pelling distance can be rapidly calculated substituting Eq.
Ž . Ž .17 into Eq. 9 and it is shown in Fig. 7a.

5. Behaviour of the structure in the presence of absorp-
tion

We want now to analyze what happens when the
material that we are considering is absorbing, that is a
realistic situation. Two main events take place in this
situation: the detach distance changes and the output inten-
sity is smaller that the input intensity. The variation of the

Ž .detach distance can immediately be seen from Eq. 9
where it is possible to substitute the amplitude C of the

Ž .soliton with its intensity I using Eq. 19 that can rapidly
be rewritten as

IsC 2rC , 18Ž .0
2'Ž .where C s 2n rn log 2q 3 . Due to the pres-Ž .0 2 0

ence of absorption, the intensity decreases during propaga-
tion and the relative detach distance decreases with it. At
the detach, the intensity is equal to:

I s I exp ya z , 19Ž . Ž .ass D

where a is the absorption coefficient of the considered
Ž . Ž . Ž .material. Substituting Eq. 18 and Eq. 19 into Eq. 9 we

have:

2 2 2(Õ by Õ b y4Dn b C I exp ya zŽ .G G 0 0 D
z s . 20Ž .D 2Dn C I exp ya zŽ .0 0 D

The above equation gives the detach distance z as aD

function of input intensity. Unfortunately it is not possible
to solve it in an analytical form due to the presence of the
variable z , in complex form, in both members of theD

equation. It can only be solved numerically, once all the
necessary parameters are given. Fig. 7 shows the detach
distances for the numerical situation already considered
without absorption and in the presence of an absorption
coefficient a equal to 30 dBrm. It can be seen that, with
absorption, the curve is scaled and the detach distance, at
the same intensity level, decreases. It must be noted that,
due to the presence of absorption, it is possible to operate
at higher intensity levels because the extra energy is
absorbed to reach a longer distance. Anyway, in the fig-
ures, we consider the same intensity to compare only the
variation of the detach distances.

We want now to consider the variation of input inten-
sity in the absorbing medium. It is obvious that the more
the beam propagates inside the material, the more its
intensity decreases. Therefore we expect a higher intensity
decrease for more intense beams, that are the beams that
propagate longer inside the structure. In Fig. 8 the ratio
between the output intensity with absorption and the out-

Fig. 8. Ratio between the output intensity with absorption and the
Ž .output intensity without absorption percentage versus input in-

tensity for different values of the absorption coefficient of the
medium.

put intensity without absorption is shown versus the input
intensity for different values of the absorption coefficient
of the medium. It is possible to see that the obtained
results agrees with our predictions.

6. Response of the structure to temporal pulses

The above results do not take into account the temporal
dimension, that is they consider a constant intensity beam.
In a real case we deal with pulses whose intensity varies,
growing from zero to a maximum value, to decrease again
to zero. This allows us to deduce immediately that, only
the temporal part of the pulse, whose intensity is greater
than the trapping value depending on the optical parame-
ters of the waveguide, is locked into the structure, while
the other parts are expelled.

Let us consider a typical Gaussian pulse, whose ampli-
tude can be written, considering only the temporal part as:

A t sA exp yt2rt , 21Ž . Ž .Ž .0

where t is a parameter responsible for the beam width.
Consider a certain waveguide whose lock-in amplitude

C has been calculated. If A sC , it is evident that onlyD 0 D

a very narrow part of the central section is trapped inside
the waveguide, while most of the pulse is thrown away.
The question we want to solve now is how greater must be

Ž .A with respect to C A sNC to trap a desired0 D 0 D

portion of the pulse that is D t wide. This is equal to say
that, considering a portion of the pulse D t, we want to find
D t as a function of N when:

D t 2
D t 2

A exp y sNC exp y sC , 22Ž .0 D Dž / ž /t t

where N is a real positive number greater than 1.
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Fig. 9. Magnifying factor N as a function of the trapping percent-
age T of the beam.

Ž .Solving Eq. 22 with respect to D t we have

'D ts t log N . 23Ž . Ž .
This is not a very useful result because D t, as it stands,
does not express which percentage of the pulse is trapped.
For this purpose we introduce a parameter T , whose values
vary in the interval 0–1, that indicates the trapped percent-
age of the pulse as a function of N, defined as

qD tr2 2 'H A exp yt rt d t log NŽ .Ž .yD tr2 0
Ts serf .q` 2 ž /2H A exp yt rt d tŽ .y` 0

24Ž .
Ž .Eq. 24 can be solved with respect to N, to obtain the

over-amplitude an input pulse must have with respect to
the minimum value C , to trap a desired pulse percentageD

T :

2
Nsexp 2 erfinv T . 25Ž . Ž .Ž .

Ž .Eq. 25 is graphically shown in Fig. 9.
If we are interested in the intensity, we have to consider

N 2 instead of N.
Ž .From Eq. 25 we can see that it is possible to trap any

desired portion of the pulse, provided that we use the
proper amplitude A sNC .0 D

This is true from the theoretical point of view, without
considering the generation of second order soliton. In fact
it is well known that, given a certain beam width and a
certain medium, if we inject a beam characterized by an
intensity that is four times the intensity of the fundamental

Ž .soliton calculated with Eq. 15 , it generates a second
order soliton whose typical profile varies periodically dur-
ing propagation, with a period equal to what is called
soliton period. Since the transverse acceleration strictly
depends on the beam profile, the generation of a second
order soliton would invalidate all the calculations. It is
anyway possible to extend the whole theory to this case,
but this is not in the scope of this paper.

Since the intensity must be less than four times the
fundamental intensity, the amplitude must be less than two
times the fundamental amplitude, and therefore it is imme-

Ž .diate to calculate from Eq. 25 , or equivalently from Fig.
9, that the maximum trapping percentage T of the pulse is
approximately equal to 0.4.

Lower values of amplitude give rise to lower trapping
percentage, while higher ones generate second order soli-
ton whose propagation behaviour is quite different with
respect to the propagation of the fundamental soliton stud-
ied here. The propagation of a second order soliton is
outside the scope of this paper.

7. Conclusions

The studied behaviour of a soliton beam in a trape-
zoidal shaped waveguide allows one to realize a high pass
filter where the filtered variable is represented by the
intensity of the input beam. This device would be able to
work also as a demultiplexer. The cut-intensity is easily
controllable through the width and the refractive index of
the waveguide.

The transferring ratio between the input and the output
in pulsed operation can be accurately controlled by prop-
erly choosing the intensity of the input beam.
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