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INTRODUCTION
Evolutionary strategies such as the one offerethbygenetic algorithms have demonstrated to be
very efficient in the correct use of energy.
They can be applied using simple electronic micnb@dlers that read input data such as the
presence of people inside the room, the outsidpeeature, the inside temperature, the time, the
date and other data that are useful to charactigrésdesired application and so on. The output data
are represented by the desired electrical effiaimset of energy as a function of the input data that
act directly on the electrical and the air condiéipinstallations[1-5].
This kind of application ensures a local efficiese of energy but its not capable of operating from
a more general point of view that is to ensure fiinient use of energy in an extended number of
rooms or in a building, given a certain power defywvamount that can not be overcame.
The proposed system is composed by a series dfgenatic controllers (LGC) that learn and adapt
their energy management strategy according to #mégations of input data, ensuring a local
efficient use of energy and a perfect comfort & tboms occupants, switching and trimmering
properly all the electrical loads. Using their exanary features, the local controllers are capabl
of developing proper forecasts of energy needfi@fcontrolled room, that varies constantly as a
function of the variations of the input data.
The local controllers are connected through a comaation bus to a central genetic controller
(CGC) that continuously receive the programmed ggnéorecasts of the local controllers. The
central controller evaluates simultaneously all¢hergy forecasts of the local controllers, togethe
with their relative priorities and assigns themeatain electrical power quota, that can respedt the
requests or can be below their requests, accotditige global situation of electrical energy needs:
if the request is respected the local controlléna@es the programmed energy forecast to ensure an
optimal comfort of the room occupants, otherwise kbcal controller disconnects the electrical
loads characterized by a reduced priority.
During the normal working the local controllers kxde continuously the power need forecasts and
as soon as there is a discrepancy between thdaiedfexeds and the forecasted needs, in term of
increases or decreases, they immediately commeriicase variations to the central controller that
reallocates these energy variations to the othetraiters, always ensuring an optimal energy
management and a respect of the maximum deliveregip
The purpose of this paper is to illustrate the bdjpg of this system characterized by an extremely
dynamic behaviour that adapts continuously to tbetecal power needs of the controlled building,
ensuring always the best comfort of the occupaathjcing energy wastes and never overcoming a
fixed delivered power.

GENETIC ALGORITHMSAND CLASSIFIER
Genetic algorithms (GAs) represent wide range nigakeoptimisation methods, that use the
natural processes of evolution and genetic recoaticoim.
They can be used in different application fieltsyrtks to their versatility.
GAs are very useful when the target is to find ppraximate global minimum in a high-dimension,
multi-modal function domain, in a near-optimal mann
They can easily handle discontinuous and non-@iffeable functions, on the contrary of the most
optimisation methods.



The GAs encode each parameters of the problemnibat be optimised into a proper sequence
(where the alphabet used is generally binary) dallegene, and combine the different genes to
constitute a chromosome. A proper group of chrommesy called population, experience a

Darwinian processes of natural selection, mating mautation, creating new generations, until it

reaches the final optimal solution driven by a gebfitness function.

A classifier system is a machine learning systeat tearns syntactically simple string rules to

guide its performance in an arbitrary environmextlassifier system is composed by three sub
systems:

1) rules and messages system

2) apportionment of credit system

3) genetic algorithm.
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Fig.1 Scheme of a Genetic Classifier

The rule and message system of a classifier syist@nspecial kind of production system, that is a
computational scheme that uses rules as its oaipileg method. Although there is a wide variation
in syntax between production systems, the rulesgareerally of the form ‘if <condition> then
<action>’. The meaning of a production rule is ttie action may be taken when the condition is
satisfied. Even if this simple device for represenknowledge can seem to be too constraining, it
has been shown that production system are compuigdly complete and also convenient, since a
single rule or a small set of rules can represeabraplex set of thoughts compactly. Classifier
systems restrict a rule to a fixed-length represteat. This restriction has two benefits: all sgsn
under the permissible alphabet are syntacticallgmmgyful and fixed string representation permits
string operators of the genetic kind, letting pbkesa genetic algorithm search of permissible rules
Classifier system use parallel activation whereaslitional expert systems use serial rule
activation. During each matching cycle, a tradigilbexpert system activates a single rule. This-rule
by-rule procedure is a bottleneck to increase prtdty, and much of the difference between
competing expert system architectures concernselection of the better single rule activation
strategies for this or that type of problem. Clssisystems overcome this bottleneck, allowing
parallel activation of rules during a given matehgycle. Thanks to this feature, classifier systems
allow multiple activities to be coordinated simukusly.

When choices must be made between mutually exdwsivironmental actions or when the size of
the matched rule set must be pruned to accommadidatéxed length message list, these choices
are postponed to the last possible moment, andrthgation is then performed competitively.

In traditional expert systems, the value or ratifigule relative to the other rules is fixed by the
programmer in conjunction with the expert groupeaperts being emulated. In a rule learning
system, the relative value of different rules i® @i the key pieces of information that must be
learned. To facilitate this kind of learning, cléiss systems force classifier to coexist in an
information-based service economy. A competitiomadd between classifiers where the right to
answer relevant messages goes to the highest bjdui¢hn the subsequent payment of bids serving
as a source of income to previously successful agessenders. In this way a chain of rules is
formed from the input of the system, representedhay detectors, to the output of the system,



represented by the actuators. The competitive @aitithe economy ensures that good rules, that
are the more profitable, survive and bad ruled,dh@unprofitable, die off.

The apportionment of credit is very important irclassifier system. It uses a sort of internal
currency that is exchanged and accumulated to geecavinatural figure of merit. Using a classifier’s
bank balance as a fithess function, classifier beyeproduced, crossed, and mutated, according to
the criteria illustrated in the previous paragraphsus, not only can the system learn by ranking
extant rules, but it can also discover new posdiefiyer rules as innovative combinations of its old
rules.

DESCRIPTION OF THE DISTRIBUTED GENETIC SYSTEM
We already said that the system is composed byiassef local genetic controllers (LGC) that
manage locally the electrical loads and preparegggntorecasts that are constantly sent to the
central genetic controller (CGC).
The LGC is composed by an electronic microcontrahat controls one or more than one room. It
is equipped with a certain number of input sensoi a certain number of output actuators, which
manage the electric loads and the other energxesuirhe input can be represented, for example,
by the presence of people inside a room, the autsichperature, the inside temperature, the time,
the date and other data that are useful to chaisetine desired application and so on. The output
data are represented by the desired energy managstraegies as a function of the input data that
act directly on the electrical and the air condiép installations. The LGCs have already been
studied [1-4] and their working schemes and thaicfionalities are not repeated here for brevity.
The CGC, whose study represents the purpose ofptper, is composed by a computerized
workstation, that can be, for example, a persooalputer whose nowadays computation power has
demonstrated to be sufficient for our purpose. TEC receives the power need forecasts from the
LGCs and continuously reallocates eventual poweiatran request to the controllers, trying to
ensure by a continuous training an optimal energynagement and a respect of the maximum
delivered power. The scheme of the system is showig.2.

Fig.2 Scheme of the distributed genetic system.

It is now important to define the format of the up of the CGC that are the outputs of the LGCs,
and the format of the outputs of the CGC that laeanputs of the LGCs.

First of all the electrical loads are supposededalivided into two groups: the electrical loadshvat
high priority that are the loads that cannot beahsected and the loads with a low priority that ar
the one that can be disconnected without compragniany activity. The total delivered power is
also supposed to be equal to the sum of the poftreohigh priority loads so that, in case of
simultaneous switching of all of them, their fulcting is ensured. On the contrary, when there are
not all switched on, a part of the power can beded towards the low priority loads, according to
the needs expressed by the LGC, trying to satifihe better level, their requests.

It is now necessary to define the minimum timerwvaé of the power request: a good compromise
between precision and volume of generated datadérasnstrated to be 10 minutes, that is the LGC
generates their power forecast every 10 minuteserelve instructions for power allocation from
the CGC every ten minutes.

It is also necessary to choose the temporal leoigthe power forecast needs: a good time interval
has demonstrated to be 24 hours. This means tleay 0 minutes the LGCs generate 2 string
messages, one for the high priority loads and andhe low priority loads, that are the output
messages directed to the CGC, composed by 144 msrf@eumbers each hour multiplied for 24
hours) indicating the power needs for the next@dré following the messages production.



Since it is preferred to use a binary alphabetotdifg the data and obtain the best performance by
the GAs [5] it has been supposed, without losseofegality, that each LGC manages no more than
2,5 kW of power with a resolution of 10 W, that e@ponds to the use of 8 bits (256 numbers).
Each output strings is therefore composed by 1182 (b44 x 8 bits=144 bytes), that is a very
compact message in term of data transmission anaonyeoccupation.

If N_cc is the number of LCG present on the controlledding, the CGC controller receive, every
10 minutes, 2 Nsc input messages to be managed and satisfied ivether way.

These messages are properly inserted in a strimgewthe first element is composed by the input
messages produced by the LCG 1 for the high pyitwids and low priority loads, and so on for
the other messages until reaching the last LCGs Bhiing constitutes the <condition> of the
general form of the rules that is :’ if <conditiottxen <action>’. Since the action is represented by
the power programs of each LCG, the <action> isratttarized by the same structure of the
<condition>, and the output string is properly daposed into sub-strings that are sent to the
respective LGCs.

The CGC generates its rules respecting the conditiat the sum of the electrical powers used by
the LCGs following the programs sent to them by @C, is less or equal to the total delivered
power, to avoid malfunctionings. The CGC generatss the management rules respecting the
condition of trying to satisfy at the best the &lieal power forecast of the LGCs.

RESULTS

The distributed genetic system has been simulatediested in a real time modality to study its
behaviour and its performance.
To better illustrates the obtained results it isassary to define some performance parameters.
Since the LGCs try to make their power forecasingasn their generated rules by learning process
and since sudden changes of the environmental ttamslinot experienced before by the LGCs can
induce error in power forecast need, it is necgssaconsider this important factor. For this reaso
the first parameter is the Forecast Error (FE) ihaelated to the error between the power forecast
of LGCs and their effective power needs. Given iage LGC, if R(i) is the power forecast at a
certain time sample i,R) is the effective power need at a the same samaple i and fax is the
total maximum managed by the considered LGC, wimedforecast Error of a the considered LGC
the following expression:

144

> |P:(i) - Pe(i)

FE, cc =100 (1)
Pyiax
From the given definition it is evident that if B¢ is equal to 100% the power forecast needs of
the next 24 hours are totally wrong while if |&¢ is equal to 0% the power forecast needs of the
next 24 hours are totally exact.
We define the FE of the system as the mean valtleedf\{ ¢ of all the LGC, that is:
NLGC
Z FENLGe
FE=_'=t (2)
Nicc

being Nsc is the number of LGCs that compose the system.
Since the CGC tries to grant the power forecagtach LGC, if R(i) is the power allocated to the
considered LGC at a certain time sample-{i)®s the power forecast at a certain time sampad
Puax Is the total maximum managed by the considered ,lM&Cdefine Forecast Granting Rate of a
the considered LGC (FGE) the following expression:
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We define the Forecast Granting Rate of the sys(E@R) as the mean value of the RGRof all
the LGC, that is:

NLGC

Z FGRN ac
FGR=—= (4)
LGC
We already said that the LGCs control loads diviohed high priority loads (HPL) and low priority
loads (LPL). Since we suppose that the total dedvgower is exactly equal to the total power of
the HPL, it is evident that if the LGC request powaly for the HPLs, there are always satisfied
even if their forecasts are wrong. Since the LG&dfalso power to the LPL, it is necessary to
define another parameter that indicates which p¢age of the power is given to the HPL and
which percentage of power is given to the LPL. Bos reason we define the Low-High power
loads Ratio (LHR) as the ratio between the powahefLPL and the power of the HPL expressed
in percentage. The LHR parameter can assume posaives including zero (only HPL power).
In fig.3 the results obtained for the Forecast @ngnRate [%] as a function of Forecast Variability
[%] for different values of Low-High power loads ta(LHR) are shown.
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Fig.3 Forecast Granting Rate [%] as a functionaeEast Variability [%)] for different values of
Low-High power loads Ratio (LHR).

It is possible to see that when the FV is redubedRGR assume values next to 100%, that is all the
LGC power forecasts are satisfied for any valuesHiR.

On the contrary, when FV increases, the FGR deeseas steepest as LHR increase. This is
intuitive since when FV increases, the electricalver assigned to every LGC tends to not respect
the real needs and this effect tends to becomergomhivhen it is necessary to give power to the



low priority loads (greater values of LHR), wherehs total delivered power is not enough for all
of them. When LHR=0, that is only high priority sneed power, the FGR is always equal to
100%: this is a particular case since even if thredast of the LGC are not correct, the total
delivered power is always enough to feed all thyh lpriority loads.

Since the CGC needs a certain training period teigge a consistent number of rules to manage
and distribute efficiently the electrical powerides the controlled building, it is very importamt t
study also this aspect of the system.

We expect the FGR to reach its final values inéidan fig.3 after a certain number of training days
necessary to learn how to behave correctly andlseeexpect that the mentioned number increases
with the FV, that is the higher the variability tfe power forecast and the longer is the time
necessary to generates a number of consistenttaureanager correctly this uncertainty.

In fig.4 the Forecast Granting Rate [%] as a fuorctdf the number of training days for different
values of Forecast Variability (FV) is shown, folLaw-High power loads Ratio (LHR) equal to
100. It is obvious that the final value of FGR eariwith LHR (72% in the considered situation
where LHR has been assumed to be equal to 100).

It is possible to see that the CGC behaviour rdspbe expectations.
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Fig.4 Forecast Granting Rate [%] as a functiorhefriumber of training days for different values of
Forecast Variability (FV). The Low-High power loaRstio (LHR) is equal to 100.

CONCLUSIONS
A distributed genetic algorithms system for effitieise of electrical energy has been presented.
It is characterized by an extremely dynamic behavibat adapts continuously to the electrical
power needs of the controlled building, ensurirngagis the best comfort of the occupants, reducing
energy wastes and never overcoming a fixed delivposver.
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