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Abstract 

Iris Recognition is regarded as the most reliable and accurate biometric 
identification system available. The present work involves the development of a 
novel technique in order to improve the performance of iris recognition systems. 
We have used for our experiments a publicly available iris recognition system. 
Tests on CASIAv3 image database have resulted in a 2% accuracy improvement 
with respect to traditional methods, a significant one in iris recognition. 
Keywords:  Iris recognition, PCA, genetic algorithms, cosine distance, 
biometrics. 

1 Introduction 

The Iris, that is the unique human internal organ visible outside, is a sort of 
muscle that trimmers the pupil diameter, controlling the light amount that gets 
into the eye, reaching the retina where it is converted into electrical pulses that 
reach the brain to be analysed and understood. The mean iris diameter is equal to 
12 millimetres while the diameter of the pupils, varying from 10% and 80% . 
Iris is a stratified structure, composed by a layer of strongly pigmented epithelial 
cells that do not allow light penetration, a layer of muscles that trimmer the pupil 
opening, a layer of blood vases enriched by radials grooves that are little folds 
whose depth varies as a function of pupil dilatation. 
Each iris is characterized by a complex pattern whose combination of 
randomness and complexity gives it a mathematical uniqueness with a collision 



probability just equal to zero. In fact, the two iris patterns of the same person are 
different and independent and the same is valid for the eyes of the homozygote 
twins. This is due to the fact that the iris patterns are epigenetic, since they start 
from a given genetic configuration and they develop during the pregnancy 
independently from the genetic component. 
 

 
 

Figure 1: An iris picture 
 
It has been calculated [1] that the probability of existence of two similar iris 
patterns is about 10-78. 
The experiments related to the determination of the statistical properties of iris 
patterns [2, 3] have shown that they are characterized by a binomial distribution 
with ῤ=0.5 and 249 degrees of freedom that confirm that the collision probability 
of two iris pattern on the same iriscode is about 10-78. 
Iris pattern, once stabilized, remains the same for the whole life unless some 
particular degenerative pathologies occur. 
The present work proposes a novel technique for improving iris recognition 
systems accuracy through Principal Component Analysis (PCA), genetic 
algorithms (GAs) and cosine-distance (CD). 
A publicly available iris recognition system [4] has been used for system 
developing and comparative testing. Tests on CASIAv3 [5] image database have 
resulted in a 2% accuracy improvement with respect to existing systems that 
represents a significant result in iris recognition field characterized by high 
accuracy and recognition rate. 

2 Iris Acquisition 

During the iris acquisition, disturb such as cilia and eyelid can partially occlude 
the image, as shown in fig.2, and it is necessary to apply proper mask to avoid a 
noisy acquisition. 
After this operation it is necessary to make a proper segmentation to individuate 
the internal and external contours of the iris. 
 



   
(a)                                                     (b) 

 
Figure 2: (a) Clear iris image. (b) partially occluded iris image 

3 Iris Normalization 

Once individuated the external and the internal contour of the iris, a proper 
transformation from polar coordinates  ,r   to Cartesian coordinates  ,x y  is 

made using the following [6]: 
 

       
       

, 1

, 1

p i

p i

x r r x r x

y r r y r y

  

  

   

   
      (1) 

 
where  0,1r ,   0,2  ,     ,i ix y   and     ,p px y   are the 

coordinates of the iris and the pupil, respectively, along the direction 
individuated by  . In this way, the annular structure of the iris becomes a 
normalized rectangular structure as shown in fig.3. 

 
Figure 3: The iris structure normalization. 

 
 
 
 



4 Iris coding 

Once normalized the iris, is it necessary to code it. 
From this point of view, a proper binary code is derived quantifying the phase 
response of a texture filter [6], represented by the 2D Gabor filter that is: 
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 where   and   vary with an inverse proportion with respect to the frequency 

  to generate a set of quadrature pair frequency-selective filters centred in the 
position  0 0,r  . 

Then the angle of the phasor represented by complex coefficient over 4 levels 
(one for every quadrant of the complex plane) is quantified, generating for every 

 0 0,r   a couple of bit  ,h h   according to: 

 

       

       

2 22 2
0 0 0

2 22 2
0 0 0

1 Re , 0

0

1 Im , 0

0

j r j

j r j

e e e I d d
h

otherwise

e e e I d d
h

otherwise

       

 

       

 

   

   

     



     



  
       



  

       



 

 

 (3) 

 
From eqs. (3), it is possible to see that every bit represents the sign of the 
imaginary or real part of the projection of a location on the adopted filter. 
It is evident that only phase information is considered since this information are 
more significant with respect to the amplitude information that depends on the 
contrast, the light and the camera gain. 
The compensation of the eventual angular shift is made during the comparison 
phase by means of a circular shifting of the code since this operation corresponds 
to an angular rotation of the image. At the end of the operation, the code that 
gave the best score is considered since it corresponds to the best alignment. 

5 The Principal Component Analysis (PCA) 

The principal components analysis (PCA) is a very used technique for the 
selection and the reduction of the dimension of a set of features. It is based on 
the correlation principle that allows to find an orthogonal projection base that 
allows a reduction of the dimension of features arrays and the reduction of 
features themselves. 



In our case, PCA is used to calculate the projections on the axes in the 
multidimensional space of the features considering the differences of the iris 
samples that are into the database. 
The used PCA procedure allows a good generalization capability in the 
reconstruction of a signature when the latter is compared with another signature 
that has not been used in the training phase. 

6 Genetic algorithms (GAs) 

Genetic algorithms offer the great advantage of evolving their behaviour to 
match with the behaviour of the final users, using a mechanism that is very 
similar to the one used by nature. Different genetic algorithm can be used to 
achieve the desired purpose, each characterised by peculiar features. 
Genetic algorithms are considered wide range numerical optimisation methods, 
which use the natural processes of evolution and genetic recombination. Thanks 
to their versatility, they can be used in different application fields. 
GAs are particularly useful when the goal is to find an approximate global 
minimum in a high-dimension, multi-modal function domain, in a near-optimal 
manner. Unlike the most optimisation methods, they can easily handle 
discontinuous and non-differentiable functions. 

7 The proposed system 

The proposed system applies the PCA, the GAs and the Cosine distance in 
different phase of the process to increase the recognition accuracy with respect to 
the existing systems. 



 
Figure 4: Scheme of the proposed system 

 
During the step 1, since to every iris templates of each class is associated a 
proper mask used during the segmentation phase, to avoid of losing precious 
information, the mask is fused with the templates itself provided that the mask 
do not cover more than 30% of the iris. The fusion operation in made in a simple 
way: if a binary value of both templates and mask is equal to 1, the final value is 
equal to 0.5, otherwise the value of the templates remains unchanged (0,1). In 
this way a new fusion template composed by (0, 0.5,1) is generated, considering 
also the masking effect of celia and eyelid. 
During the step 2, the dataset, composed by different pre-processed vectors per 
class, is processed to obtain a single representative vector per class. The most 
useful tool is represented by genetic algorithms (GAs). 
In fact, since each class is represented by a certain number of template of the 
same iris (that in our case is equal to 3), if PCA is applied to all classes, not only 
the inter-classes differences are exalted but also the intra-classes differences are 
exalted, leading to possible problem in the recognition phase. 
For this reason, before the PCA phase, a proper merging phase, to obtain a 
unique vector representative of the all vectors that compose the class itself is 
applied. 



After different attempts, the fitness function (to be minimized) has been chosen 
to be: 

intramean extramean    (4) 
 

where intramean and extramean are, respectively, the intra-class mean of the 
distances and the extra-class mean of the distances obtained from the considered 
vector over the database in the actual state of processing. The square root 
operated on the first term is due to the need to individuate the vector that better 
represents the considered class and for this reason it is necessary to give more 
importance to the similarity related to the template belonging to the same class 
more that to the non-similarity between vectors belonging to different classes. 
Further, the PCA tends to exalt the difference between vectors belonging to 
different classes. For this reason, a fitness function that balance the above effect 
is considered. 
During the step 3, once that each class is represented by a unique vector, thanks 
to the GAs computation of step 2, a PCA transformation is applied to increase 
the differences between the different classes and reduce the dimensionality of the 
space where the different vectors can be located. The transformation is done 
through a rotation of the referring system based on the main components 
individuated by means of the PCA. The same transformation is done on the test 
template during the comparison phase to project them on the same referring 
system. 
During the step 4, a proper distance metric to calculate the distance between the 
templates is used. Since after the PCA transformation the templates are not more 
binary, it is not possible to use the Hamming distance. From this point of view, 
the cosine distance has been used since it is able to measure the degree of 
similarity more that the degree of difference such as Euclidian distance. The 
similarity is defined as: 
 

   (5) 
 

where A and B are the two considered vectors (or templates). 
Since it represents the angle between the two vectors, it is evident that is measure 
the “direction similarity”. 
 
The cosine distance is therefore defined as: 

  (6) 
 

where pi and qi, are the components of templates W1 and W2 respectively. 
It is now necessary to choose a proper threshold to be used in the comparison 
phase. In this case, the original database is considered, calculating all the 



distances between every training template and every class (that is the vector that, 
after the above operation, represents each class). In this way, a couple of 
distribution (intra-class and extra-class) is obtained. The segment that connects 
the mean of the two distributions is divided into 100 sub-segments and, for every 
value individuated on the extremes, a proper threshold of the same value is 
individuated. The accuracy (defined as 100- ((FP%+FN%)/2) where FP% are the 
False Positive in percentage and FN are the false negative in percentage), 
calculated using this threshold over the distributions, can be chosen as the one 
that has produced the best results over all. 

8 Results 

The CASIAv3 database [5] has been used that has been divided into 3 database 
composed by 60 classes composed by 7 images each (dataset 60-7), 100 classes 
composed by 7 images each (dataset 100-7), 200 classes composed by 7 images 
each (dataset100-7). 
We first randomly selected three templates for every class to represent the class 
itself: as consequence, we divided the dataset in two subsets, the enrolled set, 
which contains these templates, and the test set, containing the templates not 
selected to be enrolled. 
As a first step, we analysed the enrolled set: matching every possible pair of 
templates belonging to the set we extracted distances distribution; we then 
searched for the threshold which gave the best Accuracy, obtaining the results 
shown in table.1 
 

Table 1: Enrolled population analysis (Hamming distances) 
 

  Dataset60-7 Dataset100-7 Dataset200-7 
Distribution 
features 

   

Intra-class mean 0.3 0.29516 0.30111 
Extra-class mean  0.46998 0.47039 0.47026 
Intra-class 
variance 

0.0037689 0.0032847 0.036776 

Extra-class 
variance 

0.00024137 0.0021465 0.0022221 

Classification 
rates 

   

Best Accuracy 
found (for 
threshold) 

97.0778% 
(0.41728) 

97.6616% 
(0.4213) 

96.5504% 
(0.4296) 

Intra good 
classifications 

170 on 180 
(94.44%) 

287 on 300 
(95.66%) 

565 on 600 
(94.16%) 

Extra good 
classification 

15884 on 15930 
(99.7%) 

44397 on 44550 
(99.6%) 

17791 on 179100 
(98.93%) 

 



 
After enrolled population analysis we produced a new couple of distributions 
(intra/extra class, as usual) matching every template in the enrolled set with 
every template in the test set; we then use the previously selected threshold to 
calculate the Accuracy on these distributions (we also searched iteratively for the 
ideal threshold to apply on these distributions), obtaining the results show in 
table.2 
 

Table 2: Enrolled vs Test statistics (Hamming distances) 
 

 Dataset60-7 Dataset100-7 Dataset200-7 
Distribution 
features 

   

Intra-class mean 0.31433 0.30869 0.31516 
Extra-class mean  0.47304 0.47338 0.47344 
Intra-class variance 0.0036829 0.0031889 0.0037369 
Extra-class variance 0.00020572 0.00018924 0.0001912 
Classification 
rates 

   

Accuracy found 
(for threshold) 

96.1982% 
(0.41728) 

97.4731% 
(0.4213) 

96.5955% 
(0.4296) 

Intra good 
classifications 

666 on 720 
(92.5%) 

1141 on 1200 
(95.08%) 

2248 on 2400 
(93.666%) 

Extra good 
classification 

42436 on 42480 
(99.9%) 

118637 on 
118800 
(99.86%) 

475328 on 
477600 
(99.5243%) 

Ideal Rates    
Best Accuracy 
found (For 
Threshold) 

96.6066% 
(0.43971) 

97.7163% 
(0.4388) 

96.8401% 
(0.4386) 

Intra good 
classifications 

686 on 720 
(95.27%) 

1163 on 1200 
(96.9167%) 

2284 on 2400 
(95.166%) 

Extra good 
classifications 

41603 on 42480 
(97.9%) 

117037 on 
118800 
(98.516%) 

470501 on 
477600 
(98.5136%) 

 
Considering the developed system, again, as a first step, we analysed the enrolled 
set as before: just consider in this case we refer to the “new enrolled population”, 
obtaining the results shown in table.3 
 
 
 
 
 
 
 



 
Table 3: Enrolled population analysis (cosine-distance) 

 
 Dataset60-7 Dataset100-7 Dataset200-7 
Distribution 
features 

   

Intra-class mean 0.042722 0.057206 0.071277 
Extra-class mean  0.73227 0.74645 0.65646 
Intra-class 
variance 

0.0055536 0.0068622 0.0067554 

Extra-class 
variance 

0.0098361 0.0059322 0.0042718 

Classification 
rates 

   

Best Accuracy 
found (for 
threshold) 

99.7081% 
(0.38749) 

99.8064% 
(0.4569) 

99.6914% 
(0.4399) 

Intra good 
classifications 

179 on 180 
(99.4444%) 

299 on 300 
(99.6667%) 

597 on 600 
(99.5%) 

Extra good 
classification 

10617 on 10620 
(99.9%) 

29684 on 29700 
(99.9461%) 

119260 on 
119400 
(99.8827%) 

 
 
After enrolled population analysis we matched every template of this population 
against every template belonging to the test set (produced as the enrolled was) 
producing a new couple of distributions; we then used the previously selected 
threshold to calculate the Accuracy on these distributions (we also searched 
iteratively for the ideal threshold to apply on these distributions), obtaining the 
results shown in table.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 4: Enrolled vs Test statistics (cosine-distance) 

 
 Dataset60-7 Dataset100-7 Dataset200-7 
Distribution 
features 

   

Intra-class mean 0.11581 0.13958 0.18129 
Extra-class 
mean  

0.72704 0.74253 0.65458 

Intra-class 
variance 

0.0094728 0.085181 0.010802 

Extra-class 
variance 

0.0098429 0.0059258 0.0041061 

Classification 
rates 

   

Accuracy found 
(for threshold) 

98.697% 
(0.38749) 

99.2121% 
(0.4569) 

98.8188% 
(0.4399) 

Intra good 
classifications 

234 on 240 
(97.5%) 

394 on 400 
(98.5%)) 

782 on 800 
(97.75%) 

Extra good 
classification 

14145 on 14160 
(99.9%) 

39570 on 39600 
(99.9242%) 

159021 on 
159200 
(99.8876%)) 

Ideal Rates    
Best Accuracy 
found (For 
Threshold) 

98.8806% 
(0.403) 

99.3851% 
(0.4953) 

98.8706% 
(0.4605) 

Intra good 
classifications 

235 on 240 
(97.9167%) 

396 on 400 
(99%) 

784 on 800 
(98%) 

Extra good 
classifications 

14138 on 14160 
(99.8%) 

39509 on 39600 
(99.7702%) 

158788 on 
159200 
(99.7412%) 

 
From tables.1, 2, 3, 4 it is possible to see how the performance of the proposed 
method are superior with respect to the performances of the classical method. 

9 Conclusions 

In the present work a new technique to improve the performance of iris 
recognition systems has been studied and tested. We have used for our 
experiments a publicly available iris recognition system. Tests on CASIAv3 
image database have resulted in a 2% accuracy improvement with respect to 
traditional methods, a significant one in iris recognition. 
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