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Abstract

A device able to address a train of equally spaced pulses between two or more outputs, according to the value of the
relative phase of the first pulse with respect to the others, is presented. The device acts as an all-optical router and it is based
on the properties of a soliton beam in a transverse refractive index profile. q 1999 Published by Elsevier Science B.V. All
rights reserved.

1. Introduction

Spatial solitons are self-trapped optical beams that
are able to propagate without any change of their
spatial shape, thanks to the balance between diffrac-
tion and nonlinear refraction in a self-focusing

w xmedium 1 .
A number of spatial optical switches has been

studied utilising the interaction between two bright
or dark soliton beams, and the waveguide structures

w xinduced by these interactions 2–8 . Two distinct
parallel solitons are generally used as initial condi-
tions for such interactions. In fact, it is well known
that when two distinct bright spatial solitons are
launched parallel to each other, the interaction force
between them depends on their relative distance and

w xphase 9,10 .
The useful properties of solitons enable a variety

of useful devices to be designed. One of the most
important features is their particle-like behaviour and
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their relative robustness to external disturbs. Interest-
ing effects have been found in the study of trans-
verse effects of soliton propagation at the interface

w xbetween two nonlinear materials 11–13 or in a
material in the presence of a Gaussian refractive
index profile that is in the low perturbation regime
w x14 .

It has been shown that it is possible to switch a
soliton, in the presence of a transverse refractive
index variation, towards a fixed path, since the index
variation acts as a perturbation against which the
soliton reacts as a particle, moving as a packet
without any loss of energy.

In this paper, we study a device that is capable of
addressing a train of equally spaced pulses between
two or more outputs, according to the value of the
relative phase of the first pulse with respect to the
others.

In our geometry, a soliton beam travels in a
waveguide which, in the plane between the cladding
and the substrate, has a distribution of refractive
index which follows a triangular curve with a longi-
tudinal parabolic profile, as shown in Fig. 1.

We start by studying the general structure of the
device. Then, the transverse behaviour of a soliton in
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Fig. 1. Three-dimensional view of the structure of the considered
device.

a triangular profile, whose longitudinal profile is
parabolic, is studied. Once the properties of motion
are derived, we investigate the structure from the
global point of view, deriving all the properties and
the operative conditions that represent the scope of
this paper.

2. Structure of the router device

To simplify the development of the theory, we
consider only a 1 input–2 outputs device. The pur-
pose of the device is to switch a train of equally
spaced pulses from one output to the other according
to the address information carried from the first
pulse of the train, called addresser pulse, to realise
an optical router. We propose working with soliton
beams to use their attracting or repelling properties
w x9 and their particular behaviour when they propa-

w xgate in a transverse refractive index profile 15 . The
structure we want to study is shown in Fig. 1.

The working principle is the following: when a
train of pulse must be switched from one output to
the other, a proper phase soliton pulse is sent before
the whole train with the same temporal interval of
the pulses that compose the train. The phase is
chosen in a way that we explain later. The first pulse
that enters the device is the addresser pulse. The loop
waveguide is composed of two branches of a longi-
tudinally parabolic waveguide and two mirrors. The

behaviour of the parabolic waveguide is studied later.
If the refractive index of the parabolic waveguide is
a bit higher than that of the main waveguide and if
the curvature of the loop waveguide is the right one
Ž .as we will show later , the addresser pulse is at-
tracted towards the loop waveguide, entering in it. If
the intensity of the addresser soliton is above a
certain level, it propagates in the loop, reaching the
starting point after a certain time, called the loop
time, that is chosen to be equal to the temporal
interval between two sequential pulses of the train.
At this point, the addresser pulse propagates quasi-
parallel to the first pulse of the train that has entered
the waveguide. This pulse tends to enter the loop
waveguide: if we want it to propagate undisturbed to
reach the first output, we have to introduce a slightly
repulsive action for the time necessary to pass the
point where the two waveguides merge. If, on the
contrary, we want the pulse to reach output 2, it is
necessary to produce an energetic repulsive action.
This can be done using the properties of repulsion of
two close and parallel soliton with a relative phase

Ž . Žranging between pr2 no action and p maximum
.repulsive action . The two phase values, correspond-

ing to the slight or to the strong repulsive action,
have to be chosen in this interval, according to the
refractive index difference between the main and the
loop waveguide. After the first pulse has been cor-
rectly switched, the addresser pulse makes another
trip in the loop, reaching the merging point when
another pulse of the train is present and producing a
new switch. This commutation process continues
until all of the pulses of the train have arrived. At
this point, it is necessary to exit the addresser pulse
from the loop. Until now we have neglected the
absorbing action of the material that, trip after trip,
has decreased the intensity of the addresser pulse. If
the intensity of this pulse is properly over-dimen-
sioned so that it decreases to a certain value after a
number of trips that is equal to the number of pulses
that composes the train, the pulse has its power
lowered so that it does not remain locked inside the
loop waveguide, leaving it and letting it free of
accepting a new addresser pulse.

We will now define better the profile of the
refractive index of the waveguides and the properties
of the longitudinal parabolic waveguides that com-
pose the loop.
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3. Properties of a soliton in a longitudinal
parabolic waveguide

We now want to define the structure of the
parabolic waveguide composing the loop to find its
peculiar properties that allow the loop to work prop-
erly.

We chose this kind of waveguide because it is the
simplest curve that progressively takes the soliton
beam to the merging point of the waveguides and
then again into the loop. This path could be roughly
approximated to a linear and oblique curve, but the
final result would be an overly sharp path that
disturbs the repulsive effect that takes place into the
merging point. Furthermore, the parabolic path is the
trajectory followed from a soliton beam that is in-
jected into a triangular transverse refractive index
profile, that is, the transverse profile that we are
going to consider.

Let us consider a soliton beam propagating in the
z direction whose expression of the field Q at the
beginning of the structure is:

Q x ,0 sCsech C xyx , 1Ž . Ž . Ž .
where x is the position of the centre of the beam and
C is a real constant on which both the width and the
amplitude of the field depend. The variables x and z
are normalised with respect to the wave vector of the
wave and therefore they are not dimensional.

When the soliton beam is propagating in a trian-
gular transverse index profile, whose maximum value
is Dn and whose maximum width is 2b, it is0

wsubjected to a transverse acceleration equal to 15–
x17 :

2 Dn0 2a s C . 2Ž .T b

We use, for our analysis, a dynamic point of view
that is to consider the step by step transverse relative
position of the waveguide with respect to the beam

Ž .using the z variable as a time parameter. If x z isG

the position of the central part of the waveguide
profile with respect to z, the longitudinal expression
of the waveguide is chosen to be parabolic and its
expression is:

x z saz 2 , 3Ž . Ž .G

where a is a real constant responsible for the curva-
ture of the waveguide.

Under these conditions, the local inclination of
the waveguide with respect to the longitudinal axis z
can be regarded as the transverse relative velocity of
the waveguide that appears to the beam that propa-
gates longitudinally:

d x zŽ .G
V s s2 az . 4Ž .G d z

Ž .Using Eq. 2 , it is possible to calculate the
transverse relative velocity:

c 2 Dn0 2V s a dzs C z 5Ž .HB T b0

and the position of the beam

c Dn0 2 2x s V dzs C z . 6Ž .HB B b0

Initially, the beam is positioned in the centre of
the waveguide. Since the waveguide appears to move
with respect to an observer that follows the longitu-
dinal direction, with a relative velocity expressed by

Ž .Eq. 4 , the soliton beam enters in the constant
acceleration zone where its velocity increases lin-
early with z. It also follows a parabolic trajectory,

Ž .according to Eq. 6 , until it remains in this part of
the waveguide.

After the beam has propagated for a certain z
distance, two different situations may happen: the
beam leaves the acceleration zone without reaching
the velocity of the waveguide at that z, or the beam
acquires a velocity that is greater than or equal to the
velocity of the waveguide. The first event may be
called ‘detach situation’ since the beam leaves the
waveguide, while the second may be called ‘lock-in
situation’ since the beam reaches the other side of
the waveguide where it is stopped, reversing its path,
and so on.

At any value of z, as shown in Fig. 2, the
distance d between the waveguide and the beamGB

is:

Dn C 2
02 2d sx yx saz y zGB G B b

abyDn C 2
0 2s z . 7Ž .

b

A detach situation takes place when:

d sb. 8Ž .GB
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Fig. 2. Relative distance waveguide soliton at some propagation
distance z.

Ž .If we solve Eq. 8 with respect to z, we can
calculate, if it exists, the propagation distance where
the detachment begins:

b
z s . 9Ž .D 1r22abyDn CŽ .0

Ž .From Eq. 9 it is possible to calculate the value
C of the amplitude that divides the lock-in valuesD

from the detach values:
1r2ab

C s . 10Ž .D ž /Dn0

Ž .It is possible to see from Eq. 9 that the more the
Ž .width of the profile b parameter increases or the

Ž .curvature of the waveguide a parameter increases
or the more the refractive index decreases, the more
C increases. This behaviour agrees with what couldD

be expected.
We now want to calculate the inclination accord-

ing to which a soliton whose amplitude is smaller
than the detach amplitude leaves the waveguide.
Since the mentioned angle is equal to the detach

Ž . Ž .velocity, substituting Eq. 9 into Eq. 5 , we have:

Fs tany1 Õ 11aŽ .D

and

2 Dn C 2
o

Õ yÕ z s . 11bŽ . Ž .D B D 1r22abyDn CŽ .0

Fig. 3 shows the graphical behaviour of Eqs.
Ž . Ž . y311a and 11b for as1=10 , bs4, Dn s1=0

10y3. The detach value C can be calculated by Eq.D
Ž .10 and is equal to 2.

Owing to the absence of restrictions about the
length L of the waveguide, the lock-in value C ofD

Ž .the amplitude, expressed from Eq. 10 does not
depend on L. This means that, given a certain wave-
guide whose length is equal to L, we can obtain a
lock-in value C whose detachment distance calcu-D

Ž .lated from Eq. 9 is longer than L. In this situation,
due to the restriction imposed from the waveguide
length L, the detach value C obviously decreases.D

In fact, even if the beams characterised from an
amplitude smaller than C tend to be expelled fromD

the waveguide, the detachment takes place at a dis-
tance that is longer than the waveguide length L and
the beam remains locked-in. The new value C ,D L

which is lower than C , can be calculated from Eq.D
Ž .9 setting z sL and solving respect to C:D

1
1 b 22C s aL yb . 12Ž . Ž .D L L Dn0

Ž .Eq. 12 gives a further condition, through the
length L, to obtain a solution for the detach ampli-
tude that is:

1r2b
LG . 13Ž .ž /a

Since we are dealing with a parabolic waveguide,
we are in the presence of a curvature, with respect to
the z axis, that increases with z. We have not to
forget that we are in a paraxial approximation, that is

Ž .Fig. 3. Detach angle F in degrees, equal to atan Õ , versus CD

for as10y3 , bs4, Dn s1P10-3. The detach value is C s2.0 D
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the derived equations are valid until the angle be-
tween the propagation direction and the longitudinal
direction is smaller than 8–108. This means that, due
to the analytical expression of the waveguide, ex-

Ž .pressed from Eq. 3 , once the a parameter has been
chosen, the propagation variable z can reach a maxi-
mum value over which the paraxial approximation is
no more valid. In analytical terms, this means that it
is possible to impose this condition on the first

Ž .derivative of Eq. 3 to calculate the maximum prop-
agation distance:

xX z s tan 88s0.14s2 az 14Ž . Ž .G max max

that can be solved respect to z , giving:max

7=10y2

z s . 15Ž .max a

Ž . Ž .Substituting Eq. 15 into Eq. 3 , it is possible to
calculate the correspondening x :max

4.9=10y3

x s . 16Ž .max a

This means that, once a parabolic profile has been
chosen through the a parameter, the soliton can
propagate in it for a maximum distance equal to
z . This condition must be considered in the pro-max

ject of the loop waveguide.

4. Numerical simulation of the effect

We simulated the device from the numerical point
of view using a FD-BPM algorithm to study its
behaviour and to see if it agrees with the above
description. We only consider one half of the loop
waveguide, since the most significant commutation
effect takes place in the merging point of the two
waveguides. The situations considered are the en-
trance of the addresser soliton inside the loop and the
switching, operated from the addresser soliton with
respect to the data soliton, in the main and in the
secondary waveguides. The amplitude of the soliton
beam is Cs2, while the parameters of the wave-
guide are Dn s2=10y3, bs0.3, as1.5=10y4 ,0

which gives a detach value C s2. The refractiveD

index of the loop waveguide is 10% higher than the
refractive index of the main waveguide. The results
are shown in Fig. 4.

Ž .In Fig. 4 b , the entrance inside the loop wave-
guide is simulated. This happens since the refractive
index of the loop waveguide is higher than the
refractive index of the main waveguide and the

Ž .curvature of the loop a parameter allows the propa-
gation of the soliton whose amplitude is greater than

Ž .C s2 Cs2.5 in the simulation . In this case, theD

beam in locked inside the waveguide, as shown in
Ž .Fig. 4 a .

Ž .In Fig. 4 c , the commutation on the main wave-
Ž .guide output 1 , operated from the addresser soliton

with respect to the data soliton, is shown. In this
case, given a certain refractive index difference be-
tween the two waveguides, it is necessary to find the
relative phase value that allows the addresser soliton
to repel the data soliton, by means of numerical
simulations, in a way that it propagates just undis-
turbed on its original trajectory, remaining in the
main waveguide and reaching the output 1. Starting
from a neutral condition, that is there is no attraction

w xor repulsion between the two beams 9 , correspond-
ing to a relative phase equal to pr2, the first useful
found value is 6pr10. In this situation, the data
soliton is switched on the output 1 as required, while
the addresser soliton remains locked inside the loop
waveguide.

Ž .In Fig. 4 d , the commutation on the secondary
Ž .waveguide output 2 , operated from the addresser

soliton with respect to the data soliton, is shown. In
this case, the relative phase has been chosen to be
equal to p, to ensure the maximum repulsion of the
data soliton that is addressed towards the output 2,
while the addresser soliton remains locked inside the
loop waveguide.

5. A numerical design of a router device

We now want to give a numerical example for the
design of the considered device.

We assume we have a Schott B 270 glass, whose
optical parameters at l s620 nm are n s1.53 and0 0

n s3.4=10y20 m2rW, where n and n are the2 0 2

linear and nonlinear refractive indices, respectively
w x18 . Let us consider a spot size of the beam equal to
d s1 mm.0

We first have to dimension the whole path of the
loop according to the temporal interval between two
subsequent pulses of the train. We assume that it is
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Fig. 4. Upper view of the structure and numerical simulations. The parameters of the waveguide are Dn s1.5=10y4 , bs0.3,0
y3 Ž . Ž .as2=10 . The detach value of the loop waveguide is C s2: a upper view of the structure; b numerical simulation of the entrance,D

Ž . Ž .inside the loop waveguide, of the addresser soliton; c numerical simulation of the commutation on the main waveguide output 1 ,
operated from the addresser soliton with respect to the data soliton, where the relative phase difference between the two solitons is 6pr10;

Ž . Ž .and d numerical simulation of the commutation on the secondary waveguide output 2 , operated from the addresser soliton with respect to
the data soliton, where the relative phase difference between the two solitons is p.

equal to 5 ps. Therefore, each of the 4 branches of
the loop must be crossed in 1.25 ps, which corre-
sponds to an extension of 375 mm.

The first parameter that we chose is a. Suppose
the to select an initial value equal to 2=10y4 , we
have to calculate the maximum length L of the
parabolic waveguide that respects the paraxial condi-

Ž . Ž .tion expressed from Eqs. 14 – 16 . If L is more
than 375 mm, it is necessary to consider a shorter
distance, while if L is longer it is necessary to
consider an extra path between the end of the
parabolic waveguide and the mirror.

Substituting the chosen value of as2=10y4

Ž .into Eq. 15 , we obtain Ls350 mm. The corre-
sponding transversal path can be calculated by sub-

Ž .stituting the numerical values into Eq. 16 , which
gives x s24.5.L

Owing to the low curvature of the considered
parabolic waveguide, it is possible to approximate it
with a straight line and to calculate its length as the
hypotenuse of a right angled triangle whose sides are
L and x . Since L4x , it is possible to see that theL L

path is nearly equal to L.
To reach the total calculated length of the branch

of the loop of 375 mm, it is necessary consider an
extra path of 25 mm between the end of the parabolic
waveguide and the mirror. If this path is a straight
line whose inclination with respect to the longitudi-
nal axis is the one that assumes the parabolic wave-
guide, that is the maximum allowed from the parax-
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ial approximation, equal to 88, its projection on
transversal and longitudinal axes is equal to 3.5 mm
and 24.5 mm.

The structure of the calculated loop is shown in
Fig. 5.

It is well known that, given a certain material and
a certain light source, the intensity necessary to
generate a soliton beam is given by:

2n0
I s , 17Ž .s 2d n b0 2

where b is the wave vector of the beam. Substitut-
Ž .ing the numerical values into Eq. 17 , we have

I s3.74=1017 Wrm2.s

Since the intensity of the beam I is related to itss
w xamplitude C from Ref. 15 :

1 n0 2I s C , 18Ž .s 2 2n' 2log 2q 3Ž .
Ž . Ž .it is possible to express Eqs. 10 and 12 in term of

the intensity of the beams.
We now have to choose the parameter b and Dn0

according to the detach value of the intensity of the
beam that we require, which, according to our calcu-
lations, is equal to I s3.74=1017 Wrm2. Thiss

means that if we inject a soliton beam inside this
parabolic waveguide it is surely expelled at the end.
Since we are in the presence of absorption, it is
expelled before the end, which is what we want after
the addresser soliton has correctly switched the data

Fig. 5. Structure of the designed loop. The distances are only
schematic since they are not in scale and are expressed in mm.

soliton. The presence of absorption is anyway anal-
ysed later. If we choose for example Dn s1=10y2

0

and bs1.15, using Ls350 mm, substituting the
Ž . Ž . Ž .numerical values into Eqs. 10 , 11a , 11b and

Ž . Ž . 1712 , using Eq. 18 we obtain I s3.93=10D

Wrm2 and I s3.74=1017 Wrm2. This meansD L

that, owing to the length L of the waveguide, the
expulsion takes place at a lower intensity level ID L

respect to the value I calculated without restric-D

tions. The result we obtain is that the soliton beam is
expelled at the end of the waveguide in the absence
of absorption.

In the presence of absorption, the amplitude is
decreased during the propagation and the beam is
expelled at a distance that is shorter than L. Since
the addresser soliton has to propagate on the loop
waveguide a number of times equal to the number of
data solitons composing the data train, it is necessary
to inject a soliton whose intensity is properly over
dimensioned, depending on the value of the absorp-
tion coefficient of the material, remembering that its
intensity has to be less than 4 times the intensity

Ž .calculated with Eq. 17 to avoid the generation of a
second order soliton that would invalidate our re-
sults.

6. Behaviour of the loop waveguide in the pres-
ence of absorption

The question we want to solve now is the follow-
ing: given a certain absorption of the material and a
certain length of the loop, we ask what is the value
of the intensity I of the addresser soliton or equallya

the value of n, where I snI , that allows a certaina s

number of data pulses N to be switched towards theP

desired output. This is equvalent to expressing n as a
function of N .P

Given a certain material, it is also given the
absorption coefficient A, expressed in dBrm. Sup-
pose we have a certain loop waveguide, charac-
terised by a total length equal to L , equippedTOT

with two mirrors, characterised by a well-defined
reflection coefficient A , expressed in dB. We as-M

sume the coefficients of the attenuation to be ex-
pressed as positive numbers. The total absorption
coefficient of the loop is:

A sAL q21 A . 19Ž .L TOT M
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The attenuation A is obviously expressed as aL

positive number.
The total attenuation, for a beam that propagates

N times inside the loop, is:P

A sN AL q2 AŽ .TOT P TOT M

Ia
s20log10 Is

s20log n , 20Ž .10

which is also a positive quantity.
Ž .Eq. 20 can be solved with respect to n, giving:

Ž .N A L q2 AP TOT M

20ns10 . 21Ž .
Ž .Eq. 21 tells us what is the extra intensity that the

addresser soliton must have with respect to the data
soliton to propagate and therefore to switch N timesP

inside the loop. The minimum value of n is obvi-
ously 1, that is the absence of absorption, a situation
that does not allow the expulsion of the addresser
soliton. The maximum value of n is 4, which implies
the generation of a second order soliton, practically

Ž .unusable for our purpose. Eq. 20 is shown in Fig. 6
for different values of the attenuation of the material.
The reflection coefficient of the single mirror has
been chosen to be equal to 99.5%, which is equal to
an attenuation of 4.35=10y2 dB, that gives for the
two mirrors an attenuation of 8.7=10y2 dB.

In general, we are interested in knowing the maxi-
mum number of pulses that it is possible to switch

Fig. 6. Magnifying factor n of the intensity of the addresser
soliton I , with respect to the intensity of the data soliton I ,a s

versus the number of data pulses of the train for different values
of coefficient of attenuation A of the material, expressed in
dBrm.

Fig. 7. Maximum number of data pulses of the train versus the
coefficient of attenuation A of the material, expressed in dBrm.

with a given structure for different materials with
different coefficients of attenuation. The maximum
number of propagations takes place when ns4.

Ž .Substituting this value into Eq. 20 and solving with
respect to N , we obtain:P

20log 410maxN s , 22Ž .P AL q2 AŽ .TOT M

max Ž .that expresses N as a function of A. Eq. 22 isP

shown in Fig. 7.
The number N can be properly increased byP

Ž .decreasing the denominator of Eq. 22 , that is, by
reducing the length of the loop, the coefficient of
absorption of the material or increasing the reflectiv-
ity of the mirrors. The length of the loop LTOT

cannot be reduced under a certain limit that is im-
posed from the temporal interval between two subse-
quent pulses. The attenuation A of the mirrors canM

be reduced until reaching a reflectivity of the order
of 99.95% but no more due to physical limitations,
equal to an attenuation of 4.35=10y2 dB. The
attenuation A of the material can be reduced using a
medium that is well transparent at the used wave-
length, but it is not necessary to reduce below a
certain limit after which the attenuation of the mirror
becomes dominant. In fact, using a loop that is 1.5
mm long, like the one we have designed, the attenua-
tion of the material begins to be comparable with the
one of the two mirrors, equal to 8.7=10y2 dBrm,
for attenuation values of 60 dBrm, which gives an
attenuation of the loop A L s9=10y2 dB.TOT
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It is useful, at this point, to find the maximum
value of the coefficient of absorption A that the1P

material can have, considering the structure of the
loop waveguide, that does not allow the switching of
almost a single pulse. This is equal to set N s1 inP

Ž .Eq. 22 and to solve with respect to A:

20log 4y2 A10 M
A s . 23Ž .1P LTOT

Ž .Since the numerator of Eq. 23 must be positive,
we obtain a further condition for the mirrors:

A F10log 4, 24Ž .M 10

representing the maximum value of the coefficient of
attenuation of the mirrors that allows the device to
switch almost one data pulse. Substituting the numer-

Ž .ical values into Eq. 23 , we obtain, for the designed
device, A s8=103 dBrm.1P

7. Conclusions

We have studied and designed an all-optical router
whose working principles are based on the properties
of soliton beams. In particular, we used the property
of repulsion between properly phased solitons and
the property of propagation in a longitudinal parabolic
waveguide that we analysed in this paper.

The switching properties have been studied in
detail, obtaining some useful design criteria that help
to project a practical device.

The router device can be properly designed by
means of the width, the curvature and the refractive
index of the loop waveguide, that compose the struc-
ture.

The operative frequency, which in the designed
device is of the order of hundreds of GHz, can be
properly chosen by varying the length of the loop
waveguide.

The number of outputs can be increased as re-
quired, since the switching between them is ensured

by controlling the relative phase of the addressing
soliton with respect to the data solitons. The increase
of the outputs does not influence the operative fre-
quency, which remains relatively high.
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