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Abstract. We present a device that is capable of switching a sequence of equally spaced pulses between two

or more outputs, according to the switching information carried from the ®rst pulse, that behaves as an

addresser. The device acts as an all-optical serial switcher and it is based on the properties of a soliton

beam in a transverse refractive index pro®le. We further study the interaction force between solitons.
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1. Introduction

Spatial soliton are very useful to design optical switches and some proposals
have been considered using their interesting interaction properties and the
waveguide structures induced by these interactions (Ciao et al. 1964; Gordon
1983; Luther-Davies et al. 1992a, b; Akhmediev et al. 1993; Sheppard et al.
1993; Yang et al. 1993; Garzia et al. 1994; Krolikowski et al. 1994; Kroli-
kowski et al. 1996). The interesting properties of solitons, allow to design a
variety of helpful devices.

Attractive e�ects have been found in the study of transverse e�ects of
soliton propagation at the interface between two non-linear materials (Ace-
ves et al. 1988, 1990; Varatharajah et al. 1989) or in a material in the pres-
ence of a Gaussian refractive index pro®le, that is in low perturbation regime
(Garzia et al. 1997, 1998).

It has been shown that it is possible to switch a soliton, in the presence of a
transverse refractive index variation, towards a ®xed path, since the index
variation acts as a perturbation against which the soliton reacts as a particle,
moving as a packet without any loss of energy.

In this paper we study a device that is able of switching a sequence of
equally spaced pulses between two or more outputs, using as commutation
information the value of the relative phase of the ®rst pulse with respect to
the others. This kind of device has already been studied (Garzia et al. 1999),
with the only limitation that the switching mechanism, owed to the solitons
beams, was determined by means of direct numerical simulations. In this
paper, we improve it using an `empirical' method that allows to determine the
interaction force between two parallel solitons as a function of their relative
distance and of their relative phase. Using these results, we design an optical
device that we tested by means of numerical simulations.
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In our geometry a soliton beam travels in a waveguide which, in the plane
between the cladding and the substrate, has a distribution of refractive index
which follows a triangular curve, with a longitudinal parabolic pro®le, as
shown in Fig. 1.

We start by studying the general structure of the device. Then the trans-
verse behaviour of a soliton in a triangular pro®le, whose longitudinal pro®le
is parabolic, is examined. Then we determine the interaction force between
solitons. Once the properties of motion are derived, we investigate the
structure from the global point of view, deriving all the properties that rep-
resent the scope of this paper.

2. Structure of the serial switcher

To simplify the development of the theory, we consider only a 1 input±2
outputs device. The purpose of the device is to switch a train of equally
spaced pulses from one output to the other according to the address infor-
mation carried by the ®rst pulse of the train, called addresser pulse, to realise
an optical router. We suppose to work with soliton beams to use their
attracting or repelling properties (Gordon 1983) and their particular be-
haviour when they propagate in a transverse refractive index pro®le (Garzia
et al. 1998, 1999). The structure we want to study is shown in Fig. 1.

The working principle is the following: when a train of pulse must be
switched from one output to the other a proper phase soliton pulse is sent
before the whole train, with the same temporal interval of the pulses that
compose the train. The ®rst pulse that enters the device is the addresser
pulse. The loop waveguide is composed by two branches of a suitable lon-

Fig. 1. Three-dimensional view of the structure of the serial switcher.

782 F. GARZIA ET AL.



gitudinally parabolic waveguide and two mirrors. If the refractive index of
the parabolic waveguide is a bit higher than the one of the main waveguide
and if the curvature of the loop waveguide is the right one (as we will show
later) the addresser pulse is attracted towards the loop waveguide, entering in
it. If the intensity of the addresser soliton is above a certain level, it prop-
agates in the loop, reaching the starting point after a certain time, called loop
time, that is chosen to be equal to the temporal interval between two se-
quential pulses of the train. At this point the addresser pulse propagates
quasi-parallel to the ®rst pulse of the train that has entered the waveguide.
This pulse is attracted towards the loop waveguide: if we want it to propa-
gate undisturbed to reach the ®rst output we have to act a slightly repulsive
action for the time necessary to pass the point where the two waveguides
merge. If, on the contrary, we want the pulse to reach the output 2, it is
necessary to produce a strong repulsive action. This can be done using the
properties of repulsion of two close and parallel soliton with a relative phase
ranging between p=2 (no action) and p (maximum repulsive action). The two
phase values, corresponding to the slight or to the strong repulsive action,
have to be chosen in this interval, according to the refractive index di�erence
between the main and the loop waveguide. After the ®rst pulse has been
correctly switched, the addresser pulse makes another trip in the loop,
reaching the merging point when another pulse of the train is present and
producing a new switch. This commutation process continues until all the
pulses of the train have arrived. At this point it is necessary to exit the
addresser pulse from the loop. Until now we have neglected the absorbing
action of the material, that, trip after trip, has decreased the intensity of the
addresser pulse. If the intensity of this pulse is properly over-dimensioned, so
that it decreases to a certain value after a number of trips that is equal to the
number of pulses that composes the train, the pulse has its power so lowered
that does not remain locked inside the loop waveguide, leaving it and letting
it free of accepting a new addresser pulse.

We will now de®ne better the pro®le of the refractive index of the wave-
guides and the properties of the longitudinal parabolic waveguides that
compose the loop.

3. Properties of a soliton in a longitudinal parabolic waveguide

We want now to de®ne the structure of the parabolic waveguide composing
the loop to ®nd its peculiar properties that allow the loop to work properly.
We choose this kind of waveguide because it is the simplest curve that takes
progressively the soliton beam to the merging point of the waveguides and
then again into the loop. This path could be roughly approximated with a
linear and oblique curve, but the ®nal result would be a too sharp path, that
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disturbs the repulsive e�ect that takes place into the merging point. Further
the parabolic path is the trajectory followed from a soliton beam that is
injected into a triangular transverse refractive index pro®le, that is the
transverse pro®le that we are going to consider.

Let us consider a soliton beam propagating in the z-direction, whose
expression of the ®eld Q at the beginning of the structure is:

Q�x; 0� � C sech C�xÿ �x�� �; �1�

where �x is the position of the centre of the beam and C is a real constant from
which both the width and the amplitude of the ®eld depend. The variables x
and z are normalised with respect to the wavevector of the wave and therefore
they are not dimensional.

When the soliton beam is propagating in a triangular transverse index
pro®le, whose maximum value is Dn0 and whose maximum width is 2b, it is
subjected to a transverse acceleration equal to (Chen and Liu 1978; Cow
1982; Garzia et al. 1998):

aT � 2Dn0

b
C2: �2�

We use, for our analysis, a dynamic point of view, that is to consider the step
by step transverse relative position of the waveguide with respect to the beam
using the z variable as a time parameter. If xG�z� is the position of the central
part of the waveguide pro®le with respect to z, the longitudinal expression of
the waveguide is chosen to be parabolic and its expression is:

xG�z� � az2; �3�

where a is a real constant responsible for the curvature of the waveguide.
Under these conditions, the local inclination of the waveguide with respect

to the longitudinal axis z, can be regarded as the transverse relative velocity
of the waveguide that appears to the beam that propagates longitudinally:

vG � dxG�z�
dz

� 2az: �4�

Using Equation (2) it is possible to calculate the transverse relative velocity:

vB �
Z z

0

aT df � 2Dn0

b
C2z �5�

and the position of the beam:
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xB �
Z z

0

vB df � Dn0
b

C2z2: �6�

Initially the beam is positioned in the centre of the waveguide. Since the
waveguide appears to move with respect to an observer that follows
the longitudinal direction with a relative velocity expressed by Equation (4),
the soliton beam enters in the constant acceleration zone, where its velocity
increases linearly with z. It also follows a parabolic trajectory, according to
Equation (6), until it remains in this part of the waveguide.

After that the beam has propagated for a certain z distance, two di�erent
situations may happen: the beam leaves the acceleration zone without
reaching the velocity of the waveguide at that z, or the beam acquires a
velocity that is greater than or equal to the velocity of the waveguide. The
®rst event may be called `detach situation', since the beam leaves the wave-
guide, while the second one may be called `lock-in situation' since the beam
reaches the other side of the waveguide where it is stopped, reversing its path
and so on.

At any value of z, as shown in Fig. 2, the distance dGB between the
waveguide and the beam is:

dGB � xG ÿ xB � az2 ÿ Dn0C2

b
z2 � abÿ Dn0C2

b
z2: �7�

A detach situation takes place when:

Fig. 2. Relative distance waveguide-soliton at some propagation distance z.
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dGB � b: �8�

If we solve Equation (8) with respect to z we can calculate, if it exists, the
propagation distance where the detachment begins:

zD � b

abÿ Dn0C2� �1=2
: �9�

From Equation (9) it is possible to calculate the value CD of the amplitude
that divides the lock-in values from the detach values:

CD � ab
Dn0

� �1=2

: �10�

It is possible to see, from Equation (9) that the more width of the pro®le
(b parameter) or the curvature of the waveguide (a parameter) increase or the
more the refractive index decreases, the more CD increases. This behaviour
agrees with what one could expect.

We want now to calculate the inclination according to which a soliton,
whose amplitude is smaller than the detach amplitude, leaves the waveguide.
Since the mentioned angle is equal to the detach velocity, substituting
Equation (9) into Equation (5), we have:

U � a tan�vD� �11a�

and

vD � vB�zD� � 2Dn0C2

abÿ Dn0C2� �1=2
: �11b�

In Fig. 3 the graphical behaviour of Equation (11) for a � 1 � 10ÿ3; b � 4;
Dn0 � 1 � 10ÿ3 is shown. The detach value CD can be calculated by Equa-
tion (10) and it is equal to 2.

Since we deal with a parabolic waveguide, we are in the presence of a
curvature, with respect to the z axis, that increases with z. We have not to
forget that we are in a paraxial approximation, that is the derived equations
are valid until the angle between the propagation direction and the longi-
tudinal direction is lesser than 8�±10�. This means that, due to the ana-
lytical expression of the waveguide, expressed from Equation (3), once the a
parameter has been chosen, the propagation variable z can reach a maxi-
mum value over which the paraxial approximation is no more valid. In
analytical terms it means that it is possible to impose this condition to the
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®rst derivative of Equation (3) to calculate the maximum propagation
distance:

x0G�zmax� � tan 8� � 0:14 � 2azmax; �12�

that can be solved with respect to zmax giving:

zmax � 7� 10ÿ2

a
: �13�

Substituting Equation (13) into Equation (3) it is possible to calculate the
correspondent xmax:

xmax � 4:9� 10ÿ3

a
: �14�

This means that, once a parabolic pro®le has been chosen through the a
parameter, the soliton can propagate in it for a maximum distance equal to
zmax. This condition must be considered in the project of the loop waveguide.

Once determined the propagation properties of a soliton beam in the loop
waveguide it is necessary to determine the expression of the interaction force
between solitons that represents the base of the switching e�ect used in our
device.

Fig. 3. Detach angle U in degrees, equal to atan( vD), versus C for a � 10ÿ3; b � 4; Dn0 � 1 � 10ÿ3. The
detach value is CD � 2.
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4. Structure used for the determination of the interaction force between solitons

The determination of the attraction and repulsion force between two parallel
solitons as a function of their relative phase and of their relative distance is
quite di�cult (Gordon 1983). It is only possible to know that it is a cosi-
nusoidal function of the relative phase and an exponential function of their
relative distance, but it is not possible to know anything else. Further, it has
been demonstrated to be valid only in weak interaction conditions that is the
two solitons are a bit partially overlapped.

We want now to determine, by means of an `empirical' method, the in-
teraction force as a function of the relative phase and of the relative distance
of a couple of solitons even in strong interaction conditions.

The `empirical' method used is based on choosing a particular transverse
index pro®le, whose it is possible to determine the acceleration imposed to a
soliton beam that propagates inside it, and to propagate inside it two parallel
solitons, characterised by di�erent relative phase and distance. The pro®le is
chosen so that if the solitons attract each other it tends to separate them and
vice versa. The magnitude of the pro®le is changed and the propagation is
initialised again until the index action exactly balances the interaction force
between solitons: in this situation the force imposed by the index pro®le
(analytical determined) is equal to the opposite force imposed by the inter-
action between solitons. The simulations were made for di�erent values of
relative phases and relative distances, obtaining an analytical formula.

Since the attraction force varies in a cosinusoidal way (Gordon 1983) it is
possible to concentrate the research on the attractive interval 0±p=2 or
equally on the repulsive interval p=2±p, obtaining the same results. We
concentrate on the attractive interval and we decide to use a linear index
pro®le since a soliton beam that propagates inside it presents a constant
acceleration given from Equation (2).

Since we choose to study the attractive interval, the slope of the linear
index pro®le must be reversed, changing the sign of expression (2). The
simulated structured is shown in Fig. 4.

5. Numerical simulation of the structure

We have simulated the structure using a FD-BPM algorithm to determine the
interaction force. Di�erent simulations were made varying the relative dis-
tance and the relative phase to deduce the behaviour of the interaction force
that is a function of these two variables.

Once ®xed a couple distance-phase, di�erent sequences of simulations was
made until the two beams propagates without changing their distance. The
equilibrium condition is checked not only controlling the distance between
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the two peaks of the beams, but even controlling the stability of their pro®les.
In fact, since we are in the presence of two opposite forces, it may happens
that the two solitons deform their pro®les, keeping ®xed the position of their
maximums, that is the forces do not balance exactly each other even if it the
contrary appears to happen. The maximum allowed variation of the pro®le,
calculated as the sum of the relative errors, has been chosen to be 10ÿ2. These
relative errors are calculated for each point, as the absolute value of the
di�erence between the value of the beam pro®le at the begin of the simulation
and the actual value of the beam pro®le during the simulation, divided by the
®rst term of the di�erence.

Using this method, it could virtually be possible to vary the relative dis-
tance starting from a quasi total overlapping condition of the two beams.
This was not possible in practice since, owed to the strong attractive force
between the two solitons, it is necessary to apply a high refractive index
pro®le. Since the force due to the soliton is a local force that acts only in the
overlapping zone while the force due to the index pro®le acts all over the
beam, it generates a local gradient that strongly deforms the beams, invali-
dating the `empirical' measure.

The ®rst useful relative distance has demonstrated to be the half height half
width xHHHW that is the distance from the centre of the beam where the
amplitude reduces to one half, using Equation (1) it is possible to demon-
strates that:

xHHHW � 1

C
log�2�

���
3
p
�; �15�

Fig. 4. Structure used for the determination of the interaction force.

ALL-OPTICAL SERIAL SWITCHER 789



that is a function of the amplitude C. This is quite obvious since C param-
eters is also present in the argument of the hyperbolic secant function, that is
the more the amplitude C increases, the more the width of the beam decreases
and vice versa. This also implies that to obtain a general result, once chosen a
couple distance-phase, it is necessary to ®nd the di�erent interaction forces as
a function of C. This implies to increase further the number of simulations.
The minimum value of the relative distance d has therefore been considered
to be equal to twice the half height half width.

Owed to the high number of simulations necessary to validate the results of
the `empirical' method used, an automatic procedure has been implemented.
Once chosen a value for C parameter in a given interval, the procedure resizes
the dimensions of the transversal simulation window, to use it as e�ciently as
possible, and starts to simulate with di�erent increasing values of the relative
distance d, chosen in the interval of 2xHHHW � d � 6xHHHW. For each value
of d, di�erent increasing values of relative phase / are chosen in the interval
0 � / � p

2, and for each value of / di�erent simulations have been made
automatically until ®nding a value of Dn0 that let the index force to balance
the attraction force between the two solitons.

The values of C parameter have been chosen in the 5 decades interval
10ÿ2 � C � 102, and for each decade, 10 unitary values belonging to it have
been chosen, that gives a total of 50 values of C parameter. For each value of
C parameter, the relative distance d has been varied from 2xHHHW to 6xHHHW

in steps of 0:5xHHHW, that gives a total of 9 values of d. For each value of C
and d, the relative phase / has been varied from 0 to p=2 in steps of p=16,
that gives a total of 9 values of /. The total number of simulations made is
therefore equal to the product of the number of values of C parameter,
multiplied for the number of values of d, multiplied for the number of values
of /, that gives a total of 4050 simulations.

The non-equilibrium simulations must be added to this number, even
if they are immediately interrupted by the simulation system as soon as it
encounters this kind of situation, calculated according to the criterion
already exposed.

In Fig. 5 the situation of stronger index force with respect to the attraction
force, implying beams diverging, the situation of weaker index force with
respect to the attraction force, implying beams converging and the situation
of balance between the two antagonist forces, implying beams equilibrium,
are shown.

We have not to forget that we are in a paraxial approximation, that is the
derived equations are valid until the angle between the propagation direction
and the longitudinal direction is lesser than 8�±10�. Anyway, the equilibrium
condition is a paraxial free propagation situation and no particular restric-
tion is imposed. The correctness of the equations of motion (5±6) has further
been demonstrated during simulations, when the index force is stronger with
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Fig. 5. (a) Numerical simulation for C � 1; / � 0:935p=2; d � 5; Dn0 � 6:75 � 10ÿ2; b � 25. The index

force is stronger than the attraction force and the beams diverge. (b) Numerical simulation for

C � 1; / � 0:935p=2; d � 5; Dn0 � 1:25 � 10ÿ2; b � 25. The index force is weaker than the attraction

force and the beams converge. (c) Numerical simulation for C � 1; / � 0:935p=2; d � 5; Dn0 � 2:38�
10ÿ2; b � 25. The index force is equal to the attraction force and the beams propagate parallel each other.
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respect to the attraction force, and the beams are free to be accelerated by the
index pro®les.

6. Results

Since we expect, according to the general theory (Gordon 1983), that the
interaction acceleration, that we brie¯y call force, is an exponential function
of the relative distance and cosinusoidal function of the relative phase, we use
this kind of function in a least squares procedure, that is to ®nd the best
values of the two parameters P1; P2 of the following expression:

a�d;/; P1; P2� � P1 exp�ÿP2 d ÿ 2xHHHW� �� cos /; �d � 2xHHHW� �16�

with a given quadratic error e2, for each singular point, given by the square of
the di�erence between the value of the searched curve and the value found by
means of the simulations, that we have ®xed to be e2 < 2:5 � 10ÿ5C4

�� ��.
The least squares method applied to the Equation (16), respecting the given

error, gives P1 � C2=5 and P2 � C, and the resulting expression is:

a�d;/� � C2

5
exp ÿC d ÿ 2xHHHW� �� � cos/; �d � 2xHHHW� �17�

with an error jej, for each point, that is lesser than 5 � 10ÿ3C2
�� ��.

In Fig. 6 the graphic of Equation (17) for the only attractive interval
(0 � / � p=2) and for the whole phase interval (p=2 � / � p) using di�erent
perspective views are shown.

The obtained expression is very useful to design all optical devices where
the switching properties are based on properly relative phased solitons, since
the interaction force can to dimension the device. In fact if we anyway choose
to make the device not to work in a quasi-total beams overlapping situation,
in agreement with the limits of validity of Equation (16), the obtained results
perfectly match with the developed method. It has therefore been found,
according to a more qualitative weak interaction theory (Gordon 1983), that
the interaction force is an exponential function of the relative distance and
cosinusoidal function of the relative phase, with the great advantage that, in
our case, we have been able to determine it even in strong interaction con-
ditions.

The Equation (17) refers to the acceleration obtained using the normalised
non linear Schroedinger equation that is:

2i
oQ
oz
� o2Q

ox2
� 2 Qj j2Q � 0: �18�
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If we want to express Equation (17) as a function of the refractive index n0
of the nonlinear refractive index n2, and of the wavevector b � n0�2p=k�, it
is necessary to refer it to the ordinary non linear Schroedinger equation that
is:

Fig. 6. (a) Graph of the interaction force as a function of the relative distance d and of the relative phase

/. The minimum relative distance d between the centres of the beams considered is equal to twice the half

height half width xHHHW � log�2� ���
3
p �. The interval of values of relative phase / considered is

0 � / � p=2. (b) Graph of the interaction force as a function of relative distance d and of the relative

phase /. The minimum relative distance d between the centres of the beams considered is equal to twice the

half height half width xHHHW � log�2� ���
3
p �. The interval of values of relative phase / considered is

0 � / � p.
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2ib
oA
oZ
� o2A

oX 2
� 2b2 n2

n0
Aj j2A � 0; �19�

that allows to calculate the normalised Equation (18) using the scale factors
x � bX ; z � bZ;Q � A

�����������
n2=n0

p
. Introducing these scale factors into Equation

(17) we have:

a�D;/� � n2

n0

A2

5
exp ÿA

��������
n2

n0
b

r
Dÿ 2XHHHW� �

� �
cos/; �20�

where D and XHHHW are respectively the distance between solitons and the
half height half width, both expressed in non normalised units.

7. Numerical simulation of the device

We want now to design the device, using all the developed theory until this
point. The initial parameters of the loop waveguide are chosen to be equal to
Dn0 � 1 � 10ÿ3; b � 1; a � 1:5 � 10ÿ4 that give a detach value CD � 0:4.
We therefore, choose the amplitude of the soliton beams to be equal to
C � 1:5. The index variation of the input waveguide is chosen to be
Dn0 � 5 � 10ÿ4.

A beam propagating inside the main waveguide is attracted towards the
loop waveguide with an acceleration aL that can be calculated from Equation
(2), where Dn0 is the di�erence between the index variation of the loop
waveguide and the index variation of the main waveguide. Substituting the
numerical values we have aL � 2:25 � 10ÿ3. Once we know the value of the
acceleration that acts on a beam to attract it inside the loop waveguide, we
have to choose, using Equation (16), a value for the distance d and for the
relative phase /1 that allows an addresser soliton that propagates inside
the loop to repel a data soliton with an acceleration that is exactly equal to
the acceleration with which the loop index attract it. If we choose, for ex-
ample d � xHHHW, we obtain from Equation (16) /1 � �p=2� � �1=40�p. This
is the ®rst phase value of the addresser soliton that allows it to switch the
data soliton towards output 1.

The disposition of the waveguide of the device is shown in Fig. 7a. We
concentrate now on the switching towards the second output. We can say, at
®rst approximation supposing a constant repelling action between the ad-
dresser soliton and the data soliton, that the repelling acceleration, using the
disposition of waveguides shown in Fig. 7a, must cause a lateral shift equal
to xS � 1 during an interacting propagation distance equal to zS � 30. Using
Equations (2±6) we obtain that the acceleration must be equal to
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aR � 2:2 � 10ÿ3, that is just the same value of the acceleration we found in
the previous case. This is the only acceleration necessary to de¯ect the data
soliton towards output 2 without considering the term related to the at-
traction towards the loop: the total repelling acceleration owed to the in-
teraction between the addresser and the data soliton must be equal to the sum

Fig. 7a,b Upper view of the structure and numerical simulations. The parameters of the waveguide are

Dn0 � 1 � 10ÿ3; b � 1; a � 1:5 � 10ÿ4. The detach value of the loop waveguide is CD � 0:4. (a) Upper

view of the structure. a is one half of the loop that is only partially represented here, b is the ®rst output

and c is the second output. (b) Numerical simulation of the entrance, inside the loop waveguide, of the

addresser soliton. The beam propagates until reaching the bifurcation point where it is attracted into the

loop waveguide. This is the initial situation represented by the addresser soliton that precedes the data

solitons to be switched.
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of these accelerations. Using Equation (16) we obtain /2 � �p=2� � �2=40�p.
Since we are in the presence of only two outputs it is possible to choose a
phase value that enable the addresser soliton to switch the data soliton to-
wards output 2 included between /2 and p, that is the maximum repelling
action. If we are in the presence of more than two outputs, it is necessary to
calculate a phase value for each exit.

Fig. 7c,d (c) Numerical simulation of the commutation on the main waveguide (output 1), operated from

the addresser soliton with respect to the data soliton. The relative phase di�erence between the two

solitons is of p=2� p=40. This is the situation where the addresser soliton, that propagates inside the loop

waveguide (left side) and is characterized by a proper relative phase with respect to the data soliton (right

side), switches the data solitons towards the ®rst output (that is it makes the data soliton to proceed

straight ) by means of a weak repulsing action. (d) Numerical simulation of the commutation on the

secondary waveguide (output 2), operated from the addresser soliton with respect to the data soliton. The

relative phase di�erence between the two solitons is of p=2� 2p=40. This is the situation where the

addresser soliton, that propagates inside the loop waveguide (left side) and is characterized by a proper

relative phase with respect to the data solitons (right side), switches the data solitons towards the second

output by means of a strong repulsing action.
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Once designed the device and determined the operative phase values, we
have ®nally simulated the device from the numerical point of view using a
FD-BPM algorithm to study its behaviour and to see if it agrees with the
above description. We only consider one half of the loop waveguide, since
the most signi®cant commutation e�ect takes place in the merging point of
the two waveguides. The situations considered are the entrance of the ad-
dresser soliton inside the loop and the switching, operated from the addresser
soliton with respect to the data soliton, in the main and in the secondary
waveguides. The results are shown in Fig. 7.

In Fig. 7b, the entrance inside the loop waveguide is simulated. This
happens, since the refractive index of the loop waveguide is higher than the
refractive index of the main waveguide and the curvature of the loop (a
parameter) allows the propagation of the soliton whose amplitude is greater
than CD � 0:4 (C � 1:5 in the simulation). In this case the beam is locked
inside the waveguide as shown in Fig. 7a.

In Fig. 7c, the commutation on the main waveguide (output 1), operated
from the addresser soliton with respect to the data soliton, is shown. The
calculated relative phase di�erence /1 � �p=2� � �1=40�p between the ad-
dresser soliton and the data soliton generates a repelling acceleration exactly
equal to the attraction acceleration of the loop. In this situation the data
soliton is switched on the output 1 as it is desired while the addresser soliton
remains locked inside the loop waveguide.

In Fig. 7d, the commutation on the secondary waveguide (output 2), op-
erated from the addresser soliton with respect to the data soliton, is shown.
The above calculated relative phase di�erence /2 � �p=2� � �2=40�p between
the addresser soliton and the data soliton generates a repelling acceleration
exactly equal to the sum of the attraction acceleration of the loop and of the
acceleration necessary to spatially shift the data soliton towards output 2. In
this situation the data soliton is switched towards the output 2, while the
addresser soliton remains locked inside the loop waveguide. The consider-
ations about practical design of this kind of device has already been made
(Garzia et al. 1999) and they are not repeated here for brevity.

8. Conclusions

We presented and designed an all-optical serial switcher, based on the
properties of soliton beams. We used, in particular, the property of repulsion
between properly phased solitons whose we determined, using an `empirical'
method, the interaction force as a function of their relative distance and of
their relative phase. We also studied the property of propagation in a lon-
gitudinal parabolic waveguide. The switching properties have been studied in
details, obtaining some useful design criteria that help to design this kind of
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device. The serial switcher can be properly designed by means of the width,
the curvature and the refractive index of the loop waveguide that compose the
structure. The switching information is carried by the relative phase of
the ®rst pulse, called addresser pulse, whose intensity is properly increased
with respect to the data pulses to allows it to propagate inside the loop
waveguide a number of times equal to the number of data pulses to be
switched. The number of outputs can be increased since the switching among
them is ensured by controlling the relative phase of the addresser soliton with
respect to the data solitons. The extension of the outputs does not in¯uence
the operative frequency that remains relatively high.
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