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ABSTRACT

We present a device that is capable of switchiagcuence of equally spaced pulses between two @& oubputs,
according to the switching information carried fraime first pulse, that behaves as an addresserddiee acts as an all-
optical router and it is based on the properties séliton beam in a transverse refractive indefiler We further study the
interaction force between solitons.
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1. INTRODUCTION
Spatial soliton are very useful to design opticsitches and some proposals have been considerag th&ir interesting
interaction properties and the waveguide structindsced by these interactids The interesting properties of solitons,
allow to design a variety of helpful devices.
Attractive effects have been found in the studytrahsverse effects of soliton propagation at therface between two
nonlineleé’:\lr3 materiafs’ or in a material in the presence of a gaussiarat¥e index profile, that is in low perturbation
regime~
It has been shown that it is possible to switcllaa, in the presence of a transverse refradtidex variation, towards a
fixed path, since the index variation acts as @upeation against which the soliton reacts as &ghar moving as a packet
without any loss of energy.
In this paper we study a device that is able otaviing a sequence of equally spaced pulses bettmeenr more outputs,
using as commutation information the value of thlative phase of the first pulse with respect ® dthers. This kind of
device has already been studfedvith the only limitation that the switching mectism, owed to the solitons beams, was
determined by means of direct numerical simulatibmghis paper we improve it using an empiricakinoel that allows to
determine the interaction force between two pdraliditons as a function of their relative distareoed of their relative
phase. Using these results we design an opticédelévat we tested by means of numerical simulation
In our geometry a soliton beam travels in a wavéguihich, in the plane between the cladding andstliestrate, has a
distribution of refractive index which follows @angular curve, with a longitudinal parabolic plefias shown in fig.1.
We start by studying the general structure of teeiak. Then the transverse behaviour of a solitoa triangular profile,
whose longitudinal profile is parabolic, is exandndhen we determine the interaction force betwsaitons. Once the
properties of motion are derived, we investigate structure from the global point of view, derivialy the properties that
represent the scope of this paper.

2. STRUCTURE OF THE OPTICAL ROUTER

To simplify the development of the theory we coesidnly a 1 input-2 outputs device. The purposéhefdevice is to
switch a train of equally spaced pulses from onpuiuo the other according to the address infolonatarried by the first
pulse of the train, called addresser pulse, tasean optical router. We suppose to work withtenlibbeams to use their
attracting or repelling propertiesaind their particular behaviour when they propagdate transverse refractive index
profile’**> The structure we want to study is shown in fig.1.

The working principle is the following: when a tmaof pulse must be switched from one output toatier a proper phase
soliton pulse is sent before the whole train, wite same temporal interval of the pulses that campbe train. The first
pulse that enters the device is the addresser .pUilse loop waveguide is composed by two branches slitable
longitudinally parabolic waveguide and two mirrolfsthe refractive index of the parabolic waveguide bit higher than
the one of the main waveguide and if the curvatfr¢he loop waveguide is the right one (as we wiibw later) the
addresser pulse is attracted towards the loop wagegentering in it. If the intensity of the adsker soliton is above a
certain level, it propagates in the loop, reachhmgystarting point after a certain time, calledpldione, that is chosen to be
equal to the temporal interval between two segakptilses of the train. At this point the addregaése propagates quasi-
parallel to the first pulse of the train that haseeed the waveguide. This pulse is attracted tdsvélre loop waveguide: if
we want it to propagate undisturbed to reach tts diutput we have to act a slightly repulsive@cfior the time necessary



to pass the point where the two waveguides mefgeanl the contrary, we want the pulse to reachdhtput 2, it is
necessary to produce a strong repulsive actiors ddm be done using the properties of repulsiawofclose and parallel
soliton with a relative phase ranging betwe#h ( no action) andt ( maximum repulsive action). The two phase values,
corresponding to the slight or to the strong rapalsiction, have to be chosen in this interval cading to the refractive
index difference between the main and the loop gaide. After the first pulse has been correctlytshéd, the addresser
pulse makes another trip in the loop, reachingntieeging point when another pulse of the train Bspnt and producing a
new switch. This commutation process continued afitthe pulses of the train have arrived. At thaint it is necessary to
exit the addresser pulse from the loop. Until nogvhave neglected the absorbing action of the nadtéhiat, trip after trip,
has decreased the intensity of the addresser piilfee intensity of this pulse is properly overginsioned, so that it
decreases to a certain value after a number o thigt is equal to the number of pulses that coegptse train, the pulse
has its power so lowered that does not remain bhakside the loop waveguide, leaving it and lettinfyee of accepting a
new addresser pulse.

We will now define better the profile of the reft@e index of the waveguides and the propertieshef longitudinal
parabolic waveguides that compose the loop.

3. PROPERTIESOF A SOLITON IN A LONGITUDINAL PARABOLIC WAVEGUIDE
We want now to define the structure of the parabekhveguide composing the loop to find its pecytiaperties that allow
the loop to work properly.
We choose this kind of waveguide because it issttiplest curve that takes progressively the soliteam to the merging
point of the waveguides and then again into the.ddhis path could be roughly approximated withngdr and oblique
curve, but the final result would be a too shar ptat disturbs the repulsive effect that takesginto the merging point.
Further the parabolic path is the trajectory fomwfrom a soliton beam that is injected into angislar transverse
refractive index profile, that is the transversefi that we are going to consider.
Let us consider a soliton beam propagating in tarection, whose expression of the field Q at beginning of the
structure is:

Q(x,0)=Csechc(x - x)], (1)
where X is the position of the centre of the beam and & risal constant from which both the width andahwlitude of
the field depend. The variables x and z are nosadlivith respect to the wavevector of the wavethadefore they are not
dimensional.

When the soliton beam is propagating in a triangtrnsverse index profile, whose maximum valuéiis and whose

maximum width is 2b, it is subjected to a transeexsceleration equaf->*°
2An
a; :TOCZ . (2)

We use, for our analysis, a dynamic point of vi¢glwat is to consider the step by step transversdivelposition of the
waveguide with respect to the beam using the ablgias a time parameter.
If X (z) is the position of the central part of the waveguprofile with respect to z, the longitudinal eegsion of the
waveguide is chosen to be parabolic and its exjpress

X, (z)=az", ©)
where a is a real constant responsible for theaturg of the waveguide.

Under these conditions, the local inclination af thaveguide with respect to the longitudinal axisan be regarded as the
transverse relative velocity of the waveguide Hiears to the beam that propagates longitudinally:

o, (2)
vV, =———+=2az. 4
. 4)
Using eq.(2) it is possible to calculate the tramse relative velocity:
z 20
v, = [ ads = M2y (5)
and the position of the beam
- z - Ano 252
X, _Lde(-Tc z. (6)

Initially the beam is positioned in the centre bé twaveguide. Since the waveguide appears to mdabvergspect to an
observer that follows the longitudinal directiontlwa relative velocity expressed by eq.(4), thé@olbeam enters in the



constant acceleration zone, where its velocityaases linearly with z. It also follows a parabdtajectory, according to

eg.(6), until it remains in this part of the waviatgi

After that the beam has propagated for a certatfistance, two different situations may happen: hkam leaves the

acceleration zone without reaching the velocitythef waveguide at that z, or the beam acquires @citglthat is greater

than or equal to the velocity of the waveguide. Titet event may be called ‘detach situation’, sinbe beam leaves the
waveguide, while the second one may be called “lnckituation’ since the beam reaches the other sidhe waveguide

where it is stopped, reversing its path and so on.

At any value of z, as shown in fig.2, the distar;e between the waveguide and the beam is:

An C? S = ab-An,C? 2

dgy =X, — X, =az” — n . (7
A detach situation takes place when:
des =b. (8)
If we solve eq.(8) with respect to z we can cal@yld it exists, the propagation distance wheeedhtachment begins:
b
2, =5 - 9)

~ (ab-an,c?)”
From eq.(9) it is possible to calculate the valtig of the amplitude that divides the lock-in valuesni the detach values:

2
c, [ ab] . (10

an,
It is possible to see, from eq.(9) that the morewlidth of the profile (b parameter) or the curvatof the waveguide (‘a'
parameter) increase or the more the refractivexiniéereases, the mof@, increases. This behaviour agrees with what one
could expect.
We want now to calculate the inclination accordiegwhich a soliton, whose amplitude is smaller thha detach
amplitude, leaves the waveguide. Since the merdiamgle is equal to the detach velocity, substitugq.(9) into eq.(5),
we have:
P = atar(vD) (11a)
and
2An,C?
vV, =V 2z, )e /5
D B( D) (ab_AnOCZ)J/z
In fig. 3 the graphical behaviour of eq.(11) for1a*0°, b=4, An, =110 is shown. The detach valug, can be
calculated by eq.(10) and it is equal to 2.
Since we deal with a parabolic waveguide, we arthénpresence of a curvature, with respect to thriz, that increases
with z. We have not to forget that we are in a pi@laapproximation, that is the derived equatiores\aalid until the angle
between the propagation direction and the longitaldilirection is lesser than-8E0°. This means that, due to the analytical
expression of the waveguide, expressed from eq(®g the ‘a’ parameter has been chosen, the patpagariable z can

reach a maximum value over which the paraxial agipration is no more valid. In analytical terms ieams that it is
possible to impose this condition to the first dative of eq.(3) to calculate the maximum propagatistance:

(11b)

X5 (zmax) =tan8°=014=2az__, (12)
that can be solved with respectzg,_ giving:
max = 7 D.O * (13)
a
Substituting eq.(13) into eq.(3) it is possible#adculate the correspondery . :
-3
- 4910 . (14)
a

This means that, once a parabolic profile has lobasen through the ‘a’ parameter, the soliton capaggate in it for a
maximum distance equal tp,_ . This condition must be considered in the progé¢he loop waveguide.

Once determined the propagation properties of @osobeam in the loop waveguide it is necessarylégtermine the
expression of the interaction force between sddititnat represents the base of the switching efisad in our device



4, STRUCTURE USED FOR THE DETERMINATION OF THE INTERACTION FORCE BETWEEN
SOLITONS
The determination of the attraction and repulsimeé between two parallel solitons as a functiotheir relative phase and
of their relative distance is quite difficUlit is only possible to know that it is a cosinias function of the relative phase
and an exponential function of their relative dista, but it is not possible to know anything elsgrther it has been
demonstrated to be valid only in weak interactionditions that is the two solitons are a bit péstiaverlapped.
We want now to determine, by means of a mixedyaigal-numerical technique, the interaction forseaagfunction of
relative phase and of relative distance of a coaplolitons even in strong interaction conditions.
The mixed analytical-numerical technique used isebdaon choosing a particular transverse index Iprofvhose it is
possible to determine the acceleration imposedswmliton beam that propagates inside it (analytieat), and to propagate
inside it two parallel solitons, characterised liffedent relative phase and distance (numerical)p@he profile is chosen
so that if the solitons attract each other it tetodseparate them and vice versa. The magnitutieegdrofile is changed and
the propagation is initialised again until the indection exactly balances the interaction forcevgen solitons: in this
situation the force imposed by the index profileglgtical determined) is equal to the opposite donmposed by the
interaction between solitons. The simulations werade for different values of relative phases arldtive distances,
obtaining an analytical formula.
Since the attraction force varies in a cosinusoigay it is possible to concentrate the research orattractive interval
0+ 71/2 or equally on the repulsive interva/2 + 77, obtaining the same results. We concentrate omttihactive interval

and we decide to use a linear index profile sine®ldéon beam that propagates inside it presemsnatant acceleration
given from eq.(2).

Since we choose to study the attractive interbed,dope of the linear index profile must be reedrhanging the sign of
expression (2). Therefore the two beams are plgrtialerlapped in the middle of the simulations wimd where two
reversed linear profiles start to grow, generadingpposite sign action. The simulated structuseshown in fig.4.

5.NUMERICAL SIMULATION OF THE STRUCTURE
We have simulated the structure using a FD-BPMriélgo to determine the interaction force. Differentulations were
made varying the relative distance and the relgih&se to deduce the behaviour of the interactiorefthat is a function
of these two variables.
Once fixed a couple distance-phase, different sezpseof simulations was made until the two bearnpggates without
changing their distance. The equilibrium conditisichecked not only controlling the distance betwie two peaks of the
beams, but even controlling the stability of theiofiles. In fact since we are in the presencenaf bpposite forces, it may
happens that the two solitons deform their profileeeping fixed the position of their maximums,ttizathe forces do not
balance exactly each other even if it the contegayears to happen.
Using this method, it could virtually be possible vary the relative distance starting from a quasal overlapping
condition of the two beams. This was not possihl@ractice since, owed to the strong attractiveedretween the two
solitons, it is necessary to apply a high refractindex profile. Since the force due to the solitera local force that is
limited only to the overlapping zone while the ferdue to the index profile acts all over the bedrgenerates a local
gradient that strongly deforms the beams, invalidgathe measure.
The first useful relative distance has demonstraiduk the half height half widtk ,,,,, that is the distance from the centre

of the beam where the amplitude reduces to oneumsilig eq.(1) it is possible to demonstrates that:
Ko = <1002 +43), (15)

that is a function of the amplitude C. This is qudbvious since C parameters is also present irathement of the
hyperbolic secant function, that is the more thel#&ode C increases, the more the width of the bdanreases and vice
versa. This also implies that, to obtain a genezallt, once chosen a couple distance-phase,niédessary to find the
different interaction forces as a function of Gattks to obtain a parameterised expression ofantem force, using C as a
parameter. This implies to increase further the lmemof simulations. The minimum value of the relatdistance d has
therefore been considered to be equal to twicédlifeheight half width.

The systematic and complete number of simulati@sdhown that the interaction force is an expoakfinction of the
relative distance and a cosinusoidal function efriflative phase according to the general tHewith the great advantage
that, in our case, we have been able to determaeen in strong interaction conditions.

We have not to forget that we are in a paraxiat@xmation, that is the derived equations are vatitll the angle between
the propagation direction and the longitudinal clien is lesser than 810°. Anyway the equilibrium condition is a



paraxial free propagation situation and no parsicudstriction is imposed. The correctness of theadons of motion (5-6)
has further been demonstrated during simulations.

6. RESULTS
All the simulations have demonstrated that therémton acceleration, that we briefly call force ain exponential function
of the relative distance d and cosinusoidal fumctibthe relative phasg according to the following equation:

ald0)= S expl-Cld- 20, oo, (42 2%,00) (16)

where it is possible to see that it is not onlyaction of d andp but also of C. The expression of the acceleratibmws
anyway to graph it as surface in a three dimensgpace, using C as a parameter.

In figs.5 the graphic of eq.(16) for the only attige interval (&¢<17v2) and for the whole phase intervatZ<¢<m) using
different perspective views are shown.

The obtained expression is very useful to desigmtical devices where the switching properties based on properly
relative phased solitons, since the interactiondaran to dimension the device. In fact if we anywhoose to make the
device not to work in a quasi-total beams overlagpituation, in agreement with the limits of vildof eq.(16), the
obtained results perfectly match with the developethod.

It has therefore been found, according to a morlitive weak interaction thedtythat the interaction force is an
exponential function of the relative distance aasirusoidal function of the relative phase, with great advantage that, in
our case, we have been able to determine it evsindng interaction conditions.

7.NUMERICAL SIMULATION OF THE DEVICE
We want now to design the device, using all thesttgyed theory until this point.
The initial parameters of the loop waveguide areseh to be equal tdn, =1107°, b=1, a=15[10™ that give a detach

value C, 004 . We therefore choose the amplitude of the soliieams to be equal to C=1.5. The index variatiothef

input waveguide is chosen to ke, =5010™.
A beam propagating inside the main waveguide iact#d towards the loop waveguide with an acceéterad, that can be
calculated from eq.(2), wherén, is the difference between the index variation le# toop waveguide and the index

variation of the main waveguide. Substituting thenerical values we hava, = 225(10° . Once we know the value of the

acceleration that acts on a beam to attract ideghe loop waveguide, we have to choose, using@&q.a value for the
distance d and for the relative phagethat allows an addresser soliton that propagatide the loop to repel a data soliton

with an acceleration that is exactly equal to tbeeteration with which the loop index attract ftwle choose, for example

d=x

HHHW !

we obtain from eq.(16)y :g+4—];)n. This is the first phase value of the addressétosothat allows it to

switch the data soliton towards output 1.

The disposition of the waveguide of the devicenisven in fig.6a.

We concentrate now on the switching towards thersgoutput. We can say, at first approximation sy a constant
repelling action between the addresser solitonthaddata soliton, that the repelling acceleratiming the disposition of
waveguides shown in fig. 7a, must cause a latdnifil squal to x, =1 during a interacting propagation distance equal to

z, =30. Using eqs.(2-6) we obtain that the acceleratiaistrbe equal ta, = 22107, that is just the same value of the

acceleration we found in the previous case. Thikésonly acceleration necessary to deflect tha daliton towards output
2 without considering the term related to the atiom towards the loop: the total repelling accatien owed to the
interaction between the addresser and the datmrsatiust be equal to the sum of these acceleratldsisag eq.(16) we

obtain ¢, :g +4—20n. Since we are in the presence of only two outjiigspossible to choose a phase value that erihble

addresser soliton to switch the data soliton towardtput 2 included betwee@, andTt that is the maximum repelling

action. If we are in the presence of more thandwiputs, it is necessary to calculate a phase Yalugach exit.

Once designed the device and determined the operptiase values we have finally simulated the d@ewiom the
numerical point of view using a FD-BPM algorithmdiudy its behaviour and to see if it agrees withdbove description.
We only consider one half of the loop waveguidacsithe most significant commutation effect takiesg in the merging
point of the two waveguides. The situations congdeare the entrance of the addresser solitonenid loop and the



switching, operated from the addresser soliton vépect to the data soliton, in the main and énsibcondary waveguides.
The results are shown in figs. 6.

In fig. 6b the entrance inside the loop wavegugisimulated. This happens since the refractiveximdéhe loop waveguide
is higher than the refractive index of the main egunide and the curvature of the loop (‘a’ parame#dilows the
propagation of the soliton whose amplitude is gretftanC, 104 ( C=1.5 in the simulation). In this case the béam
locked inside the waveguide as shown in fig.7a.

In fig. 6¢ the commutation on the main waveguidetigat 1), operated from the addresser soliton vétpect to the data

. . . : n. 1 . .
soliton, is shown. The calculated relative phasemdince ¢ =E +%ﬂ between the addresser soliton and the data soliton

generates a repelling acceleration exactly equtidattraction acceleration of the loop. In thisation the data soliton is
switched on the output 1 as it is desired whiledtidresser soliton remains locked inside the loapaguide.
In fig. 6d the commutation on the secondary wavegoutput 2), operated from the addresser solititin respect to the

data soliton, is shown. The above calculated radgthase difference, =% +4—2071 between the addresser soliton and the

data soliton generates a repelling acceleratiootBxaqual to the sum of the attraction acceleratibthe loop and of the
acceleration necessary to spatially shift the daiédon towards output 2. In this situation theadabliton is switched
towards the output 2, while the addresser soligmnains locked inside the loop waveguide.

8. ANUMERICAL DESIGN OF THE DEVICE
We want now to give a numerical example for thagiesf the considered device.

We suppose to have a Schott B 270 glass, whoseabpirameters al, = 620nm aren, = 153 and n, = 34[10*°m?*/W
being n, and n, are the linear and nonlinear refractive indicespeetively®. Let us consider a spot size of the beam equal

to d, =1um.

We have first to dimension the whole path of theplaccording to the temporal interval between tulesequent pulses of
the train. We suppose that it is equal to 5 psrdfbee each of the 4 branches of the loop mustrbgsed in 1,25 ps, that
corresponds to an extension of 3¥8.

The first parameter that we chose is ‘a’. Suppassdlect an initial value equal t2[10™, we have to calculate the
maximum length L of the parabolic waveguide thapest the paraxial condition expressed from egs(l® and (14). If

L is longer than 37pm, it is necessary to consider a shorter distartaewf L is longer it is necessary to considereagra
path between the end of the parabolic waveguiddtadirror.

Substituting the chosen value of 280™ in eq.(13) we obtain L=35Qm. The correspondent transversal path can be
calculated substituting the numerical values i) that givesx =24.5.

Due to the low curvature of the considered parabelveguide, it is possible to approximate it watistraight line and to
calculate its length as the hypotenuse of the ngieatriangle whose sides are L ard. Since L>>x , it is possible to see
that the path is nearly equal to L.

To reach the total calculated length of the braotthe loop of 375um it is necessary consider an extra path ofugb
between the end of the parabolic waveguide andniner. If this path is a straight line whose imation with respect to
the longitudinal axis is the one that assumes tm@lwlic waveguide, that is the maximum allowedrirthe paraxial
approximation, equal to 8°, its projection on trarsal and longitudinal axes is equal to @m® and 24.5um.

It is well known that, given a certain material andertain light source, the intensity necessaetwerate a soliton beam is
given by:

2n
| d 17
Tding 0

wheref is the wavevector of the beam. Substituting th@erical values into eq.(17) we have= 37410"W/m*.
Since the intensity of the beahy is related to its amplitude C frdfn
1 n,

Is = 2
Iogiz + \/5'] 2n,

it is possible to express egs.(10) and (12) in tefthe intensity of the beams.

c?, (18)



We have now to choose the parameter b Ang according to the detach value of the intensitjhefbeam that we desire,

that, according to our calculations, is equal o= 37410"W /m?. This means that, if we inject a soliton beamdeghis

parabolic waveguide it is surely expelled at thd.eSince we are in the presence of absorptios,akpelled before the end,
that is what we want after that the addressermoliias correctly switched the data soliton. Thesgmee of absorption is
anyway analysed later. If we choose for examftfe =110 and b=1.15, using L=350@m, substituting the numerical

values into eq.(10), using eq.(18) we obtajn= 393110 W/m?, that is the soliton beam is locked up to the efithe

waveguide in the absence of absorption.

In the presence of absorption, the amplitude isedesed during the propagation and the beam islegpat a distance that
is shorter than L. Since the addresser solitortdv@sopagate on the loop waveguide a number ofstiaggial to the number
of data solitons composing the data train, it isessary to inject a soliton whose intensity is propover dimensioned,
depending on the value of the absorption coeffic@the material, remembering that its intensitis io be less than 4
times the intensity calculated with eq.(17) to avbie generation of a second order soliton thatldvimvalidate our results.

9. BEHAVIOUR OF THE LOOP WAVEGUIDE IN THE PRESENCE OF ABSORPTION

The question we want to solve now is the followiggzen a certain absorption of the material aneain length of the
loop, we ask what is the value of the intendity of the addresser soliton or equally the value ,ofvherel . =nl _, that
allows a certain number of data pulsBls to be switched towards the desired output. Thisgsal to express n as a
function of N .
Given a certain material, it is also given the apgon coefficient A, expressed in dB/m. Supposénave a certain loop
waveguide, characterised by a total length equalip, equipped with two mirrors, characterised by alwieffined
reflection coefficient A, , expressed in dB. We suppose the coefficientshefdttenuation to be expressed as positive
numbers. The total absorption coefficient of theplds:

A =AL +2A,. (19)
The attenuatiomd is obviously expressed as a positive number.
The total attenuation, for a beam that propagiiggimes inside the loop, is:

|
Acr =Ny (AL, +24, )= 20l0g,, = =20log,, n, (20)

that is a positive quantity too.
Eq.(20) can be solved with respect to n giving:
Ne (ALror +2A, )

n=10 ® . (21)
Eq.(21) tells us what is the extra intensity thet addresser soliton must have with respect tddte soliton, to propagate,
and therefore to switch\, times inside the loop. The minimum value of nliwiously 1, that is the absence of absorption,
a situation that doesn’t allow the expulsion of #mdresser soliton. The maximum value of n is 4f implies the
generation of a second order soliton, practicafiysable for our purpose. Eq.(20) is shown in figr7different values of
the attenuation of the material. The reflectionfficient of the single mirror has been chosen teeheal to 99.5%, that is
equal to an attenuation of35[107°dB, that gives, for the two mirrors, an attenuatr8.7 (10~ dB.
In general we are interested to know the maximumbrer of pulses that it is possible to switch withien structure for
different materials with different coefficients aftenuation. The maximum number of propagationssaitace when n=4.
Substituting this value into eq.(20) and solvinghwiespect toN_ we obtain:

max — 20|Og10 4
" (AL +2A,)
that expressed," as a function of A. Eq.(22) is shown in fig.8.

The numberN,_ can be properly increased by decreasing the devadami of eq.(22) that is by reducing the lengthihef

loop, the coefficient of absorption of the matenail increasing the reflectivity of the mirrors. Thength of the loop
L, cannot be reduced under a certain limit that isoiseg from the temporal interval between two subsegpulses. The

attenuation A, of the mirrors can be reduced until reaching &ecévity of the order of 99.95% but no more due to

(22)

max

physical limitations, equal to an attenuation 485107 dB. The attenuation A of the material can be reduagsing a



medium that is well transparent at the used wagtterut it is not necessary to reduce below aaelimit after which the
attenuation of the mirror becomes dominant. In,fastng a loop that is 1.5mm long, as the one we ldesigned, the

attenuation of the material begins to be comparafilethe one of the two mirrors, equal 87 (10 dB/m, for attenuation
values of 60 dB/m, that gives an attenuation ofidop AL, = 9[10° dB.

It is useful, at this point, to find the maximumlue of the coefficient of absorptiod\, that the material can have,

considering the structure of the loop waveguidat ttoesn’t allow the switching of almost a singldse. This is equal to
set N, =1 in eq.(22) and to solve with respect to A:

201 4-2
A, =200 A (29
I_TOT
Since the numerator of eq.(23) must be positivepktain a further condition for the mirrors:
A, <10log,, 4, (24)

representing the maximum value of the coefficiattenuation of the mirrors that allows the dewiceswitch almost one
data pulse. Substituting the numerical values éut¢23) we obtain, for the designed deviée, =810° dB/m

10. CONCLUSIONS
We have studied and designed an all optical routbose working principles are based on the propeuf soliton beams.
In particular we used the property of repulsionweetn properly phased solitons and the propertyropggation in a
longitudinal parabolic waveguide, that we analysethis paper.
The switching properties have been studied in etabtaining some useful design criteria that helproject a practical
device.
The router device can be properly designed by medrike width, the curvature and the refractiveeidf the loop
waveguide, that compose the structure.
The operative frequency, that in the designed d@eigof the order of hundreds of Ghz, can be ptgmrosen by varying
the length of the loop waveguide.
The number of outputs can be increased as desited the switching between them is ensured by odimg the relative
phase of the addressing soliton with respect tal#te solitons. The increase of the outputs doemfloence the operative
frequency that remains relatively high.
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