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ABSTRACT 
 
It is presented a powerful system to manage and control 
the energy in building. It is based on neural technology to 
adapt its management strategy to the controlled 
environment. The advanced neural techniques adopted is 
properly chosen to be implemented in a low computation 
capabilities device such a common electronic 
microcontroller, since it is characterized by a reduced 
number of learning operations and therefore of learning 
time. 
 
1. INTRODUCTION 
 
Different system architectures [1-4] can be used to 
manage and control the energy flows inside a building. 
They differ for the features and performances and 
obviously for the cost necessary to install them [5-7]. 
Once a particular hardware platform [8] has been chosen, 
it is necessary to implement a proper software that 
implements and executes the desired energy management 
strategy. The choice of the energy strategy needs to know 
in advance the needs of the final users together with their 
energy consumption temporal behaviour, that is a certain 
number of data must be collected, usually, for a long time. 
It is possible to avoid this kind of problem using adapting 
strategies such as the one offered by the neural networks 
[9-12]. 
Neural networks offer the great advantage of learning the 
behaviour of the final users, together with a great 
generalisation capability that make them able to face new 
situations adopting a mixed behaviour between the 
learned ones. 
The input can be represented, for example, by the 
presence of people inside a room, the outside temperature, 
the inside temperature, the time, the date and other data 
that are useful to characterise the desired application and 
so on. 
The output data are represented by the desired energy 
management strategies as a function of the input data that 
act directly on the electrical and the air conditioner 
installations. 
 
2. DEFINITION OF THE PROBLEM 
 
Different parameters such as presence, light intensity, 
temperature, humidity, etc., can be used as inputs to the 
neural network to control the energy flows, using nets 
characterized by a growing complexity. Since we use as 
hardware a microcontroller with quite limited computation 
resources, it is necessary to reduce as more as possible the 
complexity of the net to reduce the computation duty and 
increase its velocity. 

For this reason we decide to use as input only the presence 
of people inside the room, that is a binary information, 
and as output the switching on/off of the electrical loads, 
that is a binary information too. 
The neural net has therefore to learn the occupation state 
of the controlled room, that is to predict when it is 
possible and necessary to switch on or off the electrical 
loads as a function of the previous occupation states. 
The information about the presence is acquired by means 
of a sensor of presence while the output is executed by 
means of a switcher. 
 
3. THE IMPLEMENTED NEURAL NETWORK 
 
The neural net is fed with the last N values of the presence 
parameter, that are temporally spaced according to the 
desired precision, and the net must predict the next value 
of the output that is the net must learn to predict the state 
of occupation of the room basing on the previous 
occupation states of the room. 
The used neural net is the so called feedforward net that is 
composed by two layers of neurons, all of them using log-
sig functions. The first layers is composed by L neurons 
with N inputs. The second layer is composed by one 
neuron with a number of inputs equal to the number L of 
neurons output, as shown in the following figure. 
 

 
 

Fig.1 Neuronal model used 
 
This net differs from the one studied previously [9] for 
different aspects that are illustrated in the following. The 
first and immediate one is the topology of the net: two 
layers-multiple neurons this one, one layer-one neuron the 
previous one [9]. The used configuration ensures the 
presented net to remember on yearly basis more than on 
daily basis. In this way the net is capable of remembering 
a sudden changed situation, represented for example by a 
rainy day in summer, whereas the previous net needs to a 
certain number of days to adapt to the new situation. 
The used net is able to learn using a supervised training 
method where a set of Q couples of vectors 



][],....,[],[ QQ2211 t,pt,pt,p  are presented to the net, being 

p an input vector and t a target vector, and the sum of the 
average of the square errors between the output of the net 
with a given input and the desired output is calculated: 
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The weights and the biases are adjusted to reduce the 
error expressed by the expression (1), starting from the 
weights closer to the output and going towards the weights 
closer to the inputs, following a back path with respect to 
the input data, that gives the name of backpropagation to 
this kind of learning algorithm. 
It is possible to demonstrate that for this kind of net the 
error has a quadratic expression and the performance 
index can show a global minimum, a weak minimum or no 
minimum, depending on the input vectors. The function 
expressed by eq.(1) is also called performance function 
since it expresses how correctly the approximate the 
desired output. 
The back propagation learning methods belong to the so 
called gradient descent algorithms, where a proper 
performance function is used to measure the degree of 
learning of a net, following its reduction according to the 
more descending paths. 
The simplest gradient descent algorithm is the represented 
by the Widrow-Hoff learn algorithm where the weight 
matrix W and the bias vector b are iteratively updated 
according to: 

          ( ) ( ) ( ) ( )kkkk TpeWW α21 +=+  (2a) 

     ( ) ( ) ( )kkk ebb α21 +=+    (2b) 

until a convergence takes place. In eqs.(3) e is the error 
vector and α is the learning rate. If α is too large learning 
occurs fast but if it is too large the algorithm can become 
unstable, diverging and increasing the error instead of 
reducing it. To avoid divergence the learning rate must be 
less than the reciprocal of the largest eigenvector of the 

correlation matrix ppT  of the input vectors. 

Properly trained backpropagation networks tend to give 
reasonable answers when presented with inputs that they 
have never seen. Typically, a new input will lead to an 
output similar to the correct output for input vectors used 
in training that are similar to the new input being 
presented. This generalization property makes it possible 
to train a network on a representative set of input/output 
target pairs and get good results without training the 
network on all possible input/output pairs. 
We already said that there are many variations of the back 
propagation algorithm, some of which will be briefly 
illustrated in the following. 
The simplest implementation of backpropagation learning 
updates the network and biases in the direction in which 
the performance function decreases most rapidly, that is 
the negative of the gradient. One iteration of this 
algorithm can be written as: 
   kkkk gxx α−=+1    (3) 

where xk  is a vector of current weights and biases. gk is 
the current gradient and αk is the learning rate. 
The simplest technique consists in moving the weight and 
the biases in the direction of the negative gradient of the 
performance function. This is an efficient and simple 
technique that can sometimes stop in local minimums, 
without reaching the global minimum of the performance 
function. To avoid this kind of problem and to increase 
the velocity of convergence it is possible to use the so 
called steepest descent with momentum. Momentum 
allows a network to respond not only to the local gradient, 
but also to recent trends in the error surface. Acting like a 
low pass filter, momentum allows the network to ignore 
small features in the error surface. Without momentum a 
network may get stuck in a shallow local minimum while 
if it is present, a network can slide through such a 
minimum. Momentum can be added to the back 
propagation learning by making weight changes equal to 
the sum of a fraction of the last weight change and the 
new change suggested by the backpropagation rule. The 
magnitude of the effect that the last weight change is 
allowed to have is mediated by a momentum constant 
which is a number between 0 and 1. When the momentum 
constant is 0 a weight change is based solely on the 
gradient. When momentum constant is 1 the new weight is 
set equal the last weight change and the gradient is 
ignored. 
A proper variation is represented by the variable learning 
rate, that keep the learning size as large as possible while 
keeping learning stable. The learning rate is made 
responsive to the complexity of the local error surface. It 
ensures a higher learning velocity with respect to the other 
algorithms. 

 
Fig.2  Steepest descent and steepest descent with 
 Momentum: error behavior 
 
Fast and precise learning technique are represented by the 
so called quasi-Netwon algorithm, that are based on the 
basic step of the Newton’s method: 
    kkk gAxx -1

k−=+1   (4) 

being Ak the Hessian matrix (a matrix composed by the 
second derivatives) of the performance function at the 
current values of the weights and biases. Newton’s 
method often converges faster that the other method but it 
is characterized by a certain calculation complexity  due 



to the need of computating the Hessian matrix of the net. 
For this reason it is very useful to use the quasi-Newton 
method, that use an approximated Hessian matrix that is 
updated at each iteration of the algorithm. A very efficient 
quasi-Newton method is represented by the Levenberg-
Marquardt algorithm that is capable of reaching the 
typical second order training speed without having to 
compute the Hessian matrix. When the performance 
function has the form of a sum of squares, such as eq.(1), 
then the Hessian matrix  can be approximated as: 
    H=JT J   (5) 
and the gradient can be computed as: 
    g=JT e   (6) 
where J is the Jacobian matrix, which contains first 
derivatives of the network error with respect to the 
weights and biases, and e is a vector of network errors. 
The Jacobian matrix can be computed through a standard 
finite difference technique that is, given a function F of 

more variables (x1, x2,….., xN) the first derivatives 
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if ∆xi  is little enough. The Levenberg-Marquardt 
algorithm uses this approximation to the Hessian matrix in 
the following Newton-like update: 
   eJIJJxx TT 1

1 ][ −
+ +−= µkk  (8) 

When the scalar µ is zero, this is jus Newton’s method, 
using approximate Hessian matrix. When µ is large, this 
become gradient descent with a small step size. Newton’s 
method is faster and more accurate near an error 
minimum, so the aim is to shift towards Newton’s method 
as quickly as possible. Thus, µ is decreased after each 
successful step (reduction in performance function) and is 
increased only when a tentative step would increase the 
performance function . In this way, the performance 
function will always reduced at each iteration of the 
algorithm. 
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Table 1:  Comparison between the different learning  
               algorithms (normalized to the Levemberg- 

 Marquardt algorithm) 
 

Once explained the different and more common learning 
algorithms for the feedforwards neural networks we show 
the operative scheme of the used neural net. 
 

 
Fig.3 Operative scheme of the used neural network 

 
The elements pointed with ∆T are delay elements that 
give as output their input after a time interval equal ∆T. 
The system acts as an advanced predictive filter that 
estimates the actual value of the input variable once 
known N previous values of the same variable. 
The actual value of the presence variable, that is a binary 
variable, is fed into the system that calculates the 
predicted value of the presence variable, necessary to 
decide if the system can switch the electrical loads on or 
off. The system uses the actual value of the presence 
variable and its previous N-1 values. 
The prediction interval can be decided by introducing a 
certain number of delays elements in the back loop. In 
fact, since the back loop is used to calculate the error 
between the actual value and the predicted value, if we 
want the net to predict what is the value of the presence 
variable M⋅time intervals ∆T in advance, it is necessary to 
introduce M delays units. In this way the M-th delay unit 
gives at its output the presence variable predicted M time 
intervals in advance and we wish this variable to be equal 
to the actual presence variable. The comparison between 
these two variables is made by the error unit that executes 
their difference: if the error is different from zero the 
weight adjuster unit trains the net to improve the 
prediction capability of the system. If the error is equal to 
zero it means that the system was able to predict the actual 
value of the presence value M time intervals in advance 
and that it works well. The neural net is trained by 
adjusting the weights and the bias of the net using the 
Levenberg-Marquardt algorithm expressed by eq.(8). 
It is possible to see from the comparative table 1 that the 
used net ensures a reduced number of training cycles, a 
reduce number of floating point operations and therefore a 
reduced learning time with respect to the net studied 
previously [9] that uses the Widrow-Hoff rule by means of 
equations (3) which belong to the fixed learning rate 
algorithms family. 
From the figure 2 it is also possible to see that the used 
learning algorithm ensures the net to reach a global 



minimum of the error whereas the net studied previously 
is capable of reaching only local minimums of the error. 
Since the presence variable is a binary variable that can 
assume only the values 1 or 0 and the learning function is 
sigmoidal, the output of the neuron could assume any 
value. The output variable has to control electrical loads 
and it must assume only the value 1 or 0, as the input 
variable: for this reason a step transfer function is selected 
for the output neuron. 
 
4. SYSTEM IMPLEMENTATION AND RESULTS 
 
The basic practical implementation of this kind of net has 
already been discussed [9] and it is not repeated here for 
brevity. 
In the studied net, to ensure a high degree of precision, it 
is necessary to extend as more as possible the number of 
past input presence variables: the best results are obtained 
if a 24 hour period is used as input that is a total of 144 
inputs (24 hour multiplied 6 samples per hour). 
Since the complexity of the net, related to the number of 
neurons L of the first layer depends on the variability of 
the input data, that is similar input patterns need a low 
number of neurons to be properly recognized while very 
different input patterns (owed, for example, to great 
weather variability that produces a great variability of the 
occupation state of the room) need a quite high number of 
neurons to be properly recognized, it has been introduced 
a parameter called “day variability” (DV) that represents 
the variation degree between two subsequent days. It 
consists, for all the 144 samples points used by the 
system, in the calculation of the absolute value of the 
difference between the desired output OD(i) of the system 
on the actual day and the desired output OD-1(i) of the 
system on the previous day, both taken at the same sample 
time i: 

  
( ) ( )
144

iOiO
DV

144

1

1DD∑
=

−−
= i .  (9) 

From the given definition it is evident that if a considered 
day is characterized by a DV equal to 1 it is totally 
different from the previous day (the system must switch 
on whereas in the previous day it had to switch off and 
vice versa) while if a considered day is characterized by a 
DV equal to zero it is exactly equal to the previous day. 
The DV parameter is very useful in characterizing the 
variability of the input data that greatly affects the 
performance of the net and therefore its complexity. 
The first design parameter of the net is the number of 
neurons L that strongly influences the switching error of 
the system. It is evident that a low value of the DV 
parameter, that means input data characterized by a low 
variability, needs a reduced number L of neurons for the 
correct working of the net, while a high value of the DV 
parameter needs a elevated number of neurons to learn the 
variation features of the input data and therefore to switch 
correctly the system. 
Different tests on the net were made varying the number 
of neuron L and the DV parameter of the input data to 

check the system behavior from the switching error point 
of view. 
In figure 4 the relative switching error as a function of the 
number L of neurons for different values of DV 
parameter, is shown. It is possible to see that the relative 
switching error decreases when the number of neurons L 
increases. 
It is also possible to see that the more the DV parameter 
increases (that is the variability of the input data 
increases) and the more it is necessary to increase the 
number of neurons L to obtain a given relative switching 
error. 
 

 
Fig.4  Relative switching error as a function of the 

number of neuron, for different values of DV 
parameter. 

 
The number of neurons L as a function of DV parameter 
for different values of relative switching error is shown in 
figure 5. 
 

 
Fig.5  Number of neurons L as a function of DV for 

different values of relative switching error. 
 
It is possible to see that when DV parameter increases 
(high variability of input data) the number of neurons L 
increases rapidly if a reduce switching error is desired 
while it increases slowly if a greater switching error is 
tolerated. 



Another important factor to be considered is the number 
of floating point operations (NFPO) that must be executed 
to train the net, since we wish to use a limited 
computation resources microcontroller. It is obvious that 
NFPO grows not only with the number of neurons L but 
also with the DV parameter, since a highly variable input 
set needs a greater number of operations to ensure the 
convergence of the learning algorithm. This is a very 
important factor that must be considered to avoid the 
microcontroller to spend the most of time in computation 
operations, neglecting the other controlling duties. 
In figure 6 the NFPO as a function of the number of 
neurons L, for different values of DV, is shown. 
 

 
Fig.6 NFPO as a function of the number of neurons L, 

for different values of DV. 
 
The learning time depends on the specific microcontroller 
used and on the time necessary to execute a floating point 
operation (FPO): for this reason, in figure 6, it has been 
indicated the NFPO so that it is possible to know 
immediately the learning time when the system is 
implemented on different hardware platforms 
characterized by a different FPO execution time. 
The used net needs a certain training time before 
predicting the behavior of the presence variable inside the 
controlled room with a definite degree of precision: the 
higher the number of neurons L and the shorter is the 
training period (different from the learning time that 
depends on NFPO as explained before). 
The training time also depends on the variability of the 
input data, related to the DV parameter according to the 
eq.(9), that can be reduced, as usual, increasing the 
number of neuron L according to the results obtained. 
Different trainings of the net were performed to derive the 
minimum number of input data, which is equivalent to the 
training days in a real system, necessary to obtained a 
certain relative switching error. The training were 
performed varying the number L of neurons to test the 
behavior of the net and considering a day variability DV 
equal to 0.3. 
The results are shown in figure 7, where the training days 
as a function of neuron L, for different values of relative 
error, are plotted. 

It is possible to see that to obtain a reduced switching 
error it is necessary to increase the number of training 
days or increase the number L of neurons, considering 
anyway that the curves tend to present an asymptotic 
behavior above a certain value. 
It is evident that if DV increases the net needs a longer 
training period since it has to learn the variability features 
of the input data and vice versa. 
 

 
Fig.7 Number of training days as a function of the 

number of neurons L, for different values of 
relative switching error. 

 
The proposed neural net shows a higher degree of 
flexibility in the choice of the relative switching error with 
respect to the net proposed previously [9] since it is 
possible to increase the number of neuron L to reduce the 
mentioned error at will, whereas the other net shows a 
higher and unpredictable error that depends on which 
local minimum of the error surface the learning algorithm 
has been able to reach. 
 
5. CONCLUSIONS 
 
A versatile system, based on neural technology, to manage 
and control the energy in buildings has been presented. It 
is able to change and adapt its management strategy to the 
controlled environment. The advanced neural technique 
adopted is properly designed to be implemented in a low 
computation capabilities device such a common electronic 
microcontroller. 
The proposed neural net has been studied into details 
obtaining some useful design parameters that allows to 
achieve the desired results as a function of the features of 
the environmental where the system operates and as a 
function of the hardware platform used. 
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