
ADVANCED NEURAL TECHNIQUES FOR ENERGY MANAGEMENT

F. Garzia, G.M. Veca
Università di Roma "La Sapienza"

ABSTRACT

It is presented a powerful system to manage and control
the energy in building. It is based on neural technology to
adapt its management strategy to the controlled
environment. The advanced neural techniques adopted is
properly chosen to be implemented in a low computation
capabilities device such a common electronic
microcontroller, since it is characterized by a reduced
number of learning operations and therefore of learning
time.

1. INTRODUCTION

Different system architectures [1-4] can be used to
manage and control the energy flows inside a building.
They differ for the features and performances and
obviously for the cost necessary to install them [5-7].
Once a particular hardware platform [8] has been chosen,
it is necessary to implement a proper software that
implements and executes the desired energy management
strategy. The choice of the energy strategy needs to know
in advance the needs of the final users together with their
energy consumption temporal behaviour, that is a certain
number of data must be collected, usually, for a long time.
It is possible to avoid this kind of problem using adapting
strategies such as the one offered by the neural networks
[9-12].
Neural networks offer the great advantage of learning the
behaviour of the final users, together with a great
generalisation capability that make them able to face new
situations adopting a mixed behaviour between the
learned ones.
The input can be represented, for example, by the
presence of people inside a room, the outside temperature,
the inside temperature, the time, the date and other data
that are useful to characterise the desired application and
so on.
The output data are represented by the desired energy
management strategies as a function of the input data that
act directly on the electrical and the air conditioner
installations.

2. DEFINITION OF THE PROBLEM

Different parameters such as presence, light intensity,
temperature, humidity, etc., can be used as inputs to the
neural network to control the energy flows, using nets
characterized by a growing complexity. Since we use as
hardware a microcontroller with quite limited computation
resources, it is necessary to reduce as more as possible the
complexity of the net to reduce the computation duty and
increase its velocity.

For this reason we decide to use as input only the presence
of people inside the room, that is a binary information,
and as output the switching on/off of the electrical loads,
that is a binary information too.
The neural net has therefore to learn the occupation state
of the controlled room, that is to predict when it is
possible and necessary to switch on or off the electrical
loads as a function of the previous occupation states.
The information about the presence is acquired by means
of a sensor of presence while the output is executed by
means of a switcher.

3. THE IMPLEMENTED NEURAL NETWORK

The neural net is fed with the last N values of the presence
parameter, that are temporally spaced according to the
desired precision, and the net must predict the next value
of the output that is the net must learn to predict the state
of occupation of the room basing on the previous
occupation states of the room.
The used neural net is the so called feedforward net that is
composed by two layers of neurons, all of them using log-
sig functions. The first layers is composed by L neurons
with N inputs. The second layer is composed by one
neuron with a number of inputs equal to the number L of
neurons output, as shown in the following figure.

Fig.1 Neuronal model used

This net differs from the one studied previously [9] for
different aspects that are illustrated in the following. The
first and immediate one is the topology of the net: two
layers-multiple neurons this one, one layer-one neuron the
previous one [9]. The used configuration ensures the
presented net to remember on yearly basis more than on
daily basis. In this way the net is capable of remembering
a sudden changed situation, represented for example by a
rainy day in summer, whereas the previous net needs to a
certain number of days to adapt to the new situation.
The used net is able to learn using a supervised training
method where a set of Q couples of vectors

][],....,[],[QQ2211 t,pt,pt,p are presented to the net, being

p an input vector and t a target vector, and the sum of the
average of the square errors between the output of the net
with a given input and the desired output is calculated:

 []∑∑
==

−=
Q

k
jj

Q

j
j at

Q
e

Q
1

2

1

2 11
. (1)

The weights and the biases are adjusted to reduce the
error expressed by the expression (1), starting from the
weights closer to the output and going towards the weights
closer to the inputs, following a back path with respect to
the input data, that gives the name of backpropagation to
this kind of learning algorithm.
It is possible to demonstrate that for this kind of net the
error has a quadratic expression and the performance
index can show a global minimum, a weak minimum or no
minimum, depending on the input vectors. The function
expressed by eq.(1) is also called performance function
since it expresses how correctly the approximate the
desired output.
The back propagation learning methods belong to the so
called gradient descent algorithms, where a proper
performance function is used to measure the degree of
learning of a net, following its reduction according to the
more descending paths.
The simplest gradient descent algorithm is the represented
by the Widrow-Hoff learn algorithm where the weight
matrix W and the bias vector b are iteratively updated
according to:

 () () () ()kkkk TpeWW α21 +=+ (2a)

 () () ()kkk ebb α21 +=+ (2b)

until a convergence takes place. In eqs.(3) e is the error
vector and α is the learning rate. If α is too large learning
occurs fast but if it is too large the algorithm can become
unstable, diverging and increasing the error instead of
reducing it. To avoid divergence the learning rate must be
less than the reciprocal of the largest eigenvector of the

correlation matrix ppT of the input vectors.

Properly trained backpropagation networks tend to give
reasonable answers when presented with inputs that they
have never seen. Typically, a new input will lead to an
output similar to the correct output for input vectors used
in training that are similar to the new input being
presented. This generalization property makes it possible
to train a network on a representative set of input/output
target pairs and get good results without training the
network on all possible input/output pairs.
We already said that there are many variations of the back
propagation algorithm, some of which will be briefly
illustrated in the following.
The simplest implementation of backpropagation learning
updates the network and biases in the direction in which
the performance function decreases most rapidly, that is
the negative of the gradient. One iteration of this
algorithm can be written as:
 kkkk gxx α−=+1 (3)

where xk is a vector of current weights and biases. gk is
the current gradient and αk is the learning rate.
The simplest technique consists in moving the weight and
the biases in the direction of the negative gradient of the
performance function. This is an efficient and simple
technique that can sometimes stop in local minimums,
without reaching the global minimum of the performance
function. To avoid this kind of problem and to increase
the velocity of convergence it is possible to use the so
called steepest descent with momentum. Momentum
allows a network to respond not only to the local gradient,
but also to recent trends in the error surface. Acting like a
low pass filter, momentum allows the network to ignore
small features in the error surface. Without momentum a
network may get stuck in a shallow local minimum while
if it is present, a network can slide through such a
minimum. Momentum can be added to the back
propagation learning by making weight changes equal to
the sum of a fraction of the last weight change and the
new change suggested by the backpropagation rule. The
magnitude of the effect that the last weight change is
allowed to have is mediated by a momentum constant
which is a number between 0 and 1. When the momentum
constant is 0 a weight change is based solely on the
gradient. When momentum constant is 1 the new weight is
set equal the last weight change and the gradient is
ignored.
A proper variation is represented by the variable learning
rate, that keep the learning size as large as possible while
keeping learning stable. The learning rate is made
responsive to the complexity of the local error surface. It
ensures a higher learning velocity with respect to the other
algorithms.

Fig.2 Steepest descent and steepest descent with
 Momentum: error behavior

Fast and precise learning technique are represented by the
so called quasi-Netwon algorithm, that are based on the
basic step of the Newton’s method:
 kkk gAxx -1

k−=+1 (4)

being Ak the Hessian matrix (a matrix composed by the
second derivatives) of the performance function at the
current values of the weights and biases. Newton’s
method often converges faster that the other method but it
is characterized by a certain calculation complexity due

to the need of computating the Hessian matrix of the net.
For this reason it is very useful to use the quasi-Newton
method, that use an approximated Hessian matrix that is
updated at each iteration of the algorithm. A very efficient
quasi-Newton method is represented by the Levenberg-
Marquardt algorithm that is capable of reaching the
typical second order training speed without having to
compute the Hessian matrix. When the performance
function has the form of a sum of squares, such as eq.(1),
then the Hessian matrix can be approximated as:
 H=JT J (5)
and the gradient can be computed as:
 g=JT e (6)
where J is the Jacobian matrix, which contains first
derivatives of the network error with respect to the
weights and biases, and e is a vector of network errors.
The Jacobian matrix can be computed through a standard
finite difference technique that is, given a function F of

more variables (x1, x2,….., xN) the first derivatives
ix

F

∂
∂

 of

F with respect to the generic variables xi can be calculated
as:

() ()

i

NiNii

i x

xxxFxxxxF

x

F

∆
−∆+≅

∂
∂ ,...,,..,,...,,.., 11 (7)

if ∆xi is little enough. The Levenberg-Marquardt
algorithm uses this approximation to the Hessian matrix in
the following Newton-like update:
 eJIJJxx TT 1

1][−
+ +−= µkk (8)

When the scalar µ is zero, this is jus Newton’s method,
using approximate Hessian matrix. When µ is large, this
become gradient descent with a small step size. Newton’s
method is faster and more accurate near an error
minimum, so the aim is to shift towards Newton’s method
as quickly as possible. Thus, µ is decreased after each
successful step (reduction in performance function) and is
increased only when a tentative step would increase the
performance function . In this way, the performance
function will always reduced at each iteration of the
algorithm.

 Fixed
learnin

g
rate

(FLR)

FLR+
mom-
entum

Variable
learning

rate
(VLR)

VLR+
mom-
entum

Levemberg
Marquardt

Time 30 6.8 8.4 8.6 1

Train
cycles

163

31

18

14

1

Float-
ing

point
opera-
tions

5.4

1.21

1.52

2.15

1

Table 1: Comparison between the different learning
 algorithms (normalized to the Levemberg-

 Marquardt algorithm)

Once explained the different and more common learning
algorithms for the feedforwards neural networks we show
the operative scheme of the used neural net.

Fig.3 Operative scheme of the used neural network

The elements pointed with ∆T are delay elements that
give as output their input after a time interval equal ∆T.
The system acts as an advanced predictive filter that
estimates the actual value of the input variable once
known N previous values of the same variable.
The actual value of the presence variable, that is a binary
variable, is fed into the system that calculates the
predicted value of the presence variable, necessary to
decide if the system can switch the electrical loads on or
off. The system uses the actual value of the presence
variable and its previous N-1 values.
The prediction interval can be decided by introducing a
certain number of delays elements in the back loop. In
fact, since the back loop is used to calculate the error
between the actual value and the predicted value, if we
want the net to predict what is the value of the presence
variable M⋅time intervals ∆T in advance, it is necessary to
introduce M delays units. In this way the M-th delay unit
gives at its output the presence variable predicted M time
intervals in advance and we wish this variable to be equal
to the actual presence variable. The comparison between
these two variables is made by the error unit that executes
their difference: if the error is different from zero the
weight adjuster unit trains the net to improve the
prediction capability of the system. If the error is equal to
zero it means that the system was able to predict the actual
value of the presence value M time intervals in advance
and that it works well. The neural net is trained by
adjusting the weights and the bias of the net using the
Levenberg-Marquardt algorithm expressed by eq.(8).
It is possible to see from the comparative table 1 that the
used net ensures a reduced number of training cycles, a
reduce number of floating point operations and therefore a
reduced learning time with respect to the net studied
previously [9] that uses the Widrow-Hoff rule by means of
equations (3) which belong to the fixed learning rate
algorithms family.
From the figure 2 it is also possible to see that the used
learning algorithm ensures the net to reach a global

minimum of the error whereas the net studied previously
is capable of reaching only local minimums of the error.
Since the presence variable is a binary variable that can
assume only the values 1 or 0 and the learning function is
sigmoidal, the output of the neuron could assume any
value. The output variable has to control electrical loads
and it must assume only the value 1 or 0, as the input
variable: for this reason a step transfer function is selected
for the output neuron.

4. SYSTEM IMPLEMENTATION AND RESULTS

The basic practical implementation of this kind of net has
already been discussed [9] and it is not repeated here for
brevity.
In the studied net, to ensure a high degree of precision, it
is necessary to extend as more as possible the number of
past input presence variables: the best results are obtained
if a 24 hour period is used as input that is a total of 144
inputs (24 hour multiplied 6 samples per hour).
Since the complexity of the net, related to the number of
neurons L of the first layer depends on the variability of
the input data, that is similar input patterns need a low
number of neurons to be properly recognized while very
different input patterns (owed, for example, to great
weather variability that produces a great variability of the
occupation state of the room) need a quite high number of
neurons to be properly recognized, it has been introduced
a parameter called “day variability” (DV) that represents
the variation degree between two subsequent days. It
consists, for all the 144 samples points used by the
system, in the calculation of the absolute value of the
difference between the desired output OD(i) of the system
on the actual day and the desired output OD-1(i) of the
system on the previous day, both taken at the same sample
time i:

() ()
144

iOiO
DV

144

1

1DD∑
=

−−
= i . (9)

From the given definition it is evident that if a considered
day is characterized by a DV equal to 1 it is totally
different from the previous day (the system must switch
on whereas in the previous day it had to switch off and
vice versa) while if a considered day is characterized by a
DV equal to zero it is exactly equal to the previous day.
The DV parameter is very useful in characterizing the
variability of the input data that greatly affects the
performance of the net and therefore its complexity.
The first design parameter of the net is the number of
neurons L that strongly influences the switching error of
the system. It is evident that a low value of the DV
parameter, that means input data characterized by a low
variability, needs a reduced number L of neurons for the
correct working of the net, while a high value of the DV
parameter needs a elevated number of neurons to learn the
variation features of the input data and therefore to switch
correctly the system.
Different tests on the net were made varying the number
of neuron L and the DV parameter of the input data to

check the system behavior from the switching error point
of view.
In figure 4 the relative switching error as a function of the
number L of neurons for different values of DV
parameter, is shown. It is possible to see that the relative
switching error decreases when the number of neurons L
increases.
It is also possible to see that the more the DV parameter
increases (that is the variability of the input data
increases) and the more it is necessary to increase the
number of neurons L to obtain a given relative switching
error.

Fig.4 Relative switching error as a function of the

number of neuron, for different values of DV
parameter.

The number of neurons L as a function of DV parameter
for different values of relative switching error is shown in
figure 5.

Fig.5 Number of neurons L as a function of DV for

different values of relative switching error.

It is possible to see that when DV parameter increases
(high variability of input data) the number of neurons L
increases rapidly if a reduce switching error is desired
while it increases slowly if a greater switching error is
tolerated.

Another important factor to be considered is the number
of floating point operations (NFPO) that must be executed
to train the net, since we wish to use a limited
computation resources microcontroller. It is obvious that
NFPO grows not only with the number of neurons L but
also with the DV parameter, since a highly variable input
set needs a greater number of operations to ensure the
convergence of the learning algorithm. This is a very
important factor that must be considered to avoid the
microcontroller to spend the most of time in computation
operations, neglecting the other controlling duties.
In figure 6 the NFPO as a function of the number of
neurons L, for different values of DV, is shown.

Fig.6 NFPO as a function of the number of neurons L,

for different values of DV.

The learning time depends on the specific microcontroller
used and on the time necessary to execute a floating point
operation (FPO): for this reason, in figure 6, it has been
indicated the NFPO so that it is possible to know
immediately the learning time when the system is
implemented on different hardware platforms
characterized by a different FPO execution time.
The used net needs a certain training time before
predicting the behavior of the presence variable inside the
controlled room with a definite degree of precision: the
higher the number of neurons L and the shorter is the
training period (different from the learning time that
depends on NFPO as explained before).
The training time also depends on the variability of the
input data, related to the DV parameter according to the
eq.(9), that can be reduced, as usual, increasing the
number of neuron L according to the results obtained.
Different trainings of the net were performed to derive the
minimum number of input data, which is equivalent to the
training days in a real system, necessary to obtained a
certain relative switching error. The training were
performed varying the number L of neurons to test the
behavior of the net and considering a day variability DV
equal to 0.3.
The results are shown in figure 7, where the training days
as a function of neuron L, for different values of relative
error, are plotted.

It is possible to see that to obtain a reduced switching
error it is necessary to increase the number of training
days or increase the number L of neurons, considering
anyway that the curves tend to present an asymptotic
behavior above a certain value.
It is evident that if DV increases the net needs a longer
training period since it has to learn the variability features
of the input data and vice versa.

Fig.7 Number of training days as a function of the

number of neurons L, for different values of
relative switching error.

The proposed neural net shows a higher degree of
flexibility in the choice of the relative switching error with
respect to the net proposed previously [9] since it is
possible to increase the number of neuron L to reduce the
mentioned error at will, whereas the other net shows a
higher and unpredictable error that depends on which
local minimum of the error surface the learning algorithm
has been able to reach.

5. CONCLUSIONS

A versatile system, based on neural technology, to manage
and control the energy in buildings has been presented. It
is able to change and adapt its management strategy to the
controlled environment. The advanced neural technique
adopted is properly designed to be implemented in a low
computation capabilities device such a common electronic
microcontroller.
The proposed neural net has been studied into details
obtaining some useful design parameters that allows to
achieve the desired results as a function of the features of
the environmental where the system operates and as a
function of the hardware platform used.

6. REFERENCES

[1] S. Mc Clelland, “Intelligent building”, New York:
Springer-Verlag, 1989.
[2] J.A.Bernaden, R.E.Neubauer, “The intelligent building
sourcebook”, Lilburn: Fairmont Press, 1988.
[3] V. Bradshaw, K. E. Miller ,”Building Control
Systems”, John Wiley & Sons.

[4] V. Boed, “Networking and Integration of Facilities
Automation Systems”, CRC Press.
[5] M. Eyke, ”Building Automation Systems: a Practical
Guide to Selection and Implementation”, Blackwell
Science (UK).
[6] D. A. Wacker, “Complete Guide to Home
Automation”, Popular Woodworking.
[7] B. Gerhart, “Home Automation Guide for Builders”,
McGraw-Hill Publishing.
[8] F. Garzia, G. M. Veca, “Smart Automatic Control of
Energy Flows in Building”, DUE 2000, Cape Town.
[9] F. Garzia, G. M Veca, “Neural technique for energy
management in building”, DUE 2001, Cape Town.
[10] N. K. Bose, P. Liang, “Neural Network
Fundamentals with Graphs, Algorithms, and
Applications”, McGraw- Hill Publishing Company, 1998.
[11] S. I. Gallant, “Neural Network Learning and Expert
Systems”, MIT Press, 1997.
[12] W. T. Miller, “ Neural Networks for Control (Neural
Network Modeling and Connectionism), MIT Press, 1999.

7. AUTHORS

Principal Author: Fabio Garzia holds a degree in
Electronics Engineering and a PhD in Applied
Electromagnetism from the University of Rome “La
Sapienza”, Italy. He is appointed professor at the degree
in Safety and Security Engineering of the same university.
He is also responsible for the Applied Security
Laboratory. His mail address is:

Dipartimento di Ingegneria Elettrica
Università degli Studi di Roma "La Sapienza"
Via Eudossiana, 18
00184 Roma, Italy

Co-author: Giuseppe M. Veca is full professor of
Electrical Engineering at the University of Rome "La
Sapienza", Italy. He is Senior Member of IEEE and Dean
of the degree in Electrical Engineering. His fields of
research are EMC/EMI, Magnetic Devices and Power
Apparatus and Systems. His mail address is:

Dipartimento di Ingegneria Elettrica
Università degli Studi di Roma "La Sapienza"
Via Eudossiana, 18
00184 Roma, Italy

Presenter: The paper is presented by Fabio Garzia

