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ABSTRACT For this reason we decide to use as input onlptasence
of people inside the room, that is a binary infaiiorg
It is presented a powerful system to manage anttaon and as output the switching on/off of the electricads,
the energy in building. It is based on neural tedbgy to that is a binary information too.
adapt its management strategy to the controllethe neural net has therefore to learn the occupatiate
environment. The advanced neural techniques addgtedof the controlled room, that is to predict whenist
properly chosen to be implemented in a low commnat possible and necessary to switch on or off thetetat
capabilies device such a common electronitbads as a function of the previous occupatiorestat
microcontroller, since it is characterized by auesti The information about the presence is acquired bgm
number of learning operations and therefore ofrliegr of a sensor of presence while the output is exechie
time. means of a switcher.

1. INTRODUCTION 3. THEIMPLEMENTED NEURAL NETWORK

Different system architectures [1-4] can be used tdhe neural netis fed with the last N values ofghesence
manage and control the energy flows inside a mgldi parameter, that are temporally spaced accordintheo
They differ for the features and performances andesired precision, and the net must predict the vede
obviously for the cost necessary to install theri][5 of the output that is the net must learn to pretthietstate
Once a particular hardware platform [8] has beayseh, of occupation of the room basing on the previous
it is necessary to implement a proper software thatcupation states of the room.

implements and executes the desired energy manageniehe used neural net is the so called feedforwardhae is
strategy. The choice of the energy strategy neeéitadw composed by two layers of neurons, all of themgitg-

in advance the needs of the final users togethir tveir  sig functions. The first layers is composed by lunoas
energy consumption temporal behaviour, that isreate with N inputs. The second layer is composed by one
number of data must be collected, usually, forrglbme. neuron with a number of inputs equal to the nunibef

It is possible to avoid this kind of problem usigapting neurons output, as shown in the following figure.
strategies such as the one offered by the neutafories
[9-12].

Neural networks offer the great advantage of le@yrithe
behaviour of the final users, together with a greer
generalisation capability that make them able t@ faew

situations adopting a mixed behaviour between thr fy |Z| %

learned ones. P, L

The input can be represented, for example, by tt :¥

presence of people inside a room, the outside teatype, A

the inside temperature, the time, the date andr ata

that are useful to characterise the desired agjgitand

so on.

The output data are represented by the desiredyener

management strategies as a function of the inptat that Fig.1 Neuronal model used

act directly on the electrical and the air condiéo

installations. This net differs from the one studied previously {6r
different aspects that are illustrated in the felltg. The

2. DEFINITION OF THE PROBLEM first and immediate one is the topology of the rab

layers-multiple neurons this one, one layer-onegaethe
Different parameters such as presence, light iit}ens previous one [9]. The used configuration ensures th
temperature, humidity, etc., can be used as infputbe presented net to remember on yearly basis more dhan
neural network to control the energy flows, usirgtsn daily basis. In this way the net is capable of neering
characterized by a growing complexity. Since we ase 3 sudden changed situation, represented for exanypde
hardware a microcontroller with quite limited cortg@ion  rajiny day in summer, whereas the previous net needs
resources, it is necessary to reduce as more aifete certain number of days to adapt to the new sitnatio
complexity of the net to reduce the computatiorydrtd The used net is able to learn using a supervisgdirg
increase its velocity. method where a set of Q couples of vectors



[P1,tl, [P2sto]s--[Pg to] are presented to the net, beingvhereX, is a vector of current weights and biasgsis
p an input vector anta target vector, and the sum of thdh€ current gradient are is the learning rate.

average of the square errors between the outpthieafiet
with a given input and the desired output is caltad:

1ie2—1i[t —a]2 (1)

Q = | Q = J J

The weights and the biases are adjusted to rechee
error expressed by the expression (1), startingftbe
weights closer to the output and going towardsabights
closer to the inputs, following a back path witspect to
the input data, that gives the name of backpropamdb
this kind of learning algorithm.

It is possible to demonstrate that for this kindnet the

The simplest technique consists in moving the wesgpia
the biases in the direction of the negative gradiérthe
performance function. This is an efficient and denp
technique that can sometimes stop in local minimums
without reaching the global minimum of the perfonoa
function. To avoid this kind of problem and to iease
the velocity of convergence it is possible to use $o
talled steepest descent with momentum. Momentum
allows a network to respond not only to the logaldient,

but also to recent trends in the error surfaceingdike a
low pass filter, momentum allows the network toagmn
small features in the error surface. Without momengt
network may get stuck in a shallow local minimumilesh

if it is present, a network can slide through sueh

error has a quadratic expression and the perforenanginimum. Momentum can be added to the back

index can show a global minimum, a weak minimumar
minimum, depending on the input vectors. The fuoncti
expressed by eq.(1) is also called performancetifumc

propagation learning by making weight changes etpal
the sum of a fraction of the last weight change #ral
new change suggested by the backpropagation rble. T

since it expresses how correctly the approximaie ﬂ?nagnitude of the effect that the last weight chaige

desired output.

The back propagation learning methods belong tosthe
called gradient descent algorithms, where a prop
performance function is used to measure the degfee
learning of a net, following its reduction accomglito the
more descending paths.

allowed to have is mediated by a momentum constant
which is a number between 0 and 1. When the monrentu
€bnstant is 0 a weight change is based solely en th
gradient. When momentum constant is 1 the new wésgh
set equal the last weight change and the gradent i
ignored.

The simplgst gradient descent algorithm is theermmte_d A proper variation is represented by the variabketing
by the Widrow-Hoff learn algorithm where the weight ;e hat keep the learning size as large asgesshile

matrix W and the bias vectdn are iteratively updated
according to:

W (k +1) = W(k) + 2ae(k)p" (k) (2a)

b(k +1) = b(k) + 2ae(k) (2b)

until a convergence takes place. In eqsg3 the error
vector andx is the learning rate. H is too large learning
occurs fast but if it is too large the algorithrmdzecome
unstable, diverging and increasing the error imsteh
reducing it. To avoid divergence the learning ratest be
less than the reciprocal of the largest eigenveatahe

correlation matrixp'p of the input vectors.

Properly trained backpropagation networks tend i@ g
reasonable answers when presented with inputsthist
have never seen. Typically, a new input will leadan
output similar to the correct output for input vast used
in training that are similar to the new input beinc
presented. This generalization property makes ssibde
to train a network on a representative set of itgutput
target pairs and get good results without trainthg
network on all possible input/output pairs.
We already said that there are many variationb@biack
propagation algorithm, some of which will be brefl
illustrated in the following.
The simplest implementation of backpropagationnizey
updates the network and biases in the directiomhith
the performance function decreases most rapidt, ith
the negative of the gradient. One iteration of thi
algorithm can be written as:

X = X — 4,9,

3)

k+1

keeping learning stable. The learning rate is made
responsive to the complexity of the local errorface. It
ensures a higher learning velocity with respec¢hé&oother

algorithms.
Error

FLE+ Momentum

weighits,
Steepest descent and steepest descent with
Momentum: error behavior

Fig.2

Fast and precise learning technique are represégtétk

so called quasi-Netwon algorithm, that are basedhen
basic step of the Newton’s method:

Xir = X, _A-klgk 4)

being A, the Hessian matrix (a matrix composed by the
second derivatives) of the performance functionthet
current values of the weights and biases. Newton’'s
method often converges faster that the other mebubd

is characterized by a certain calculation compjexitue



to the need of computating the Hessian matrix efrtat. Once explained the different and more common legrni
For this reason it is very useful to use the qhsiton algorithms for the feedforwards neural networksshiew
method, that use an approximated Hessian matrixisha the operative scheme of the used neural net.

updated at each iteration of the algorithm. A vefficient

quasi-Newton method is represented by the Levenbel N

Marquardt algorithm that is capable of reaching th %o

typical second order training speed without having e [RE] :

compute the Hessian matrix. When the performanc : — : 1)
function has the form of a sum of squares, suabgad), : :
then the Hessian matrix can be approximated as:

H=J"J (5)
and the gradient can be computed as:
g=J"e (6)

where J is the Jacobian matrix, which contains firs
derivatives of the network error with respect tee th
weights and biases, and e is a vector of networbr®r
The Jacobian matrix can be computed through a atdnd
finite difference technique that is, given a fuantiF of

more variables (x % %) the first derivative oF of Fig.3 Operative scheme of the used neural network
feeeens S_ax
F with respect to the generic variablesan be calculated "€ €lements pointed withT are delay elements that
as: give as output their input after a time intervali@gAT.
The system acts as an advanced predictive filtat th

oF _ F(X,..,X +AX%,...X )= F(X,..,X,...,.X X ! .
— (Xl X + A% N) (Xl X N) @) estimates the actual value of the input variableeon
0x Ax known N previous values of the same variable.

if Ax; is littte enough. The Levenberg-MarquardtThe actual value of the presence variable, thatbaary

algorithm uses this approximation to the Hessiatrima  variable, is fed into the system that calculates th

the following Newton-like update: predicted value of the presence variable, necesgary
Xy =X, —[ITI+4]"7e (8) decide if the system can switch the electrical $oad or

When the scalap is zero, this is jus Newton's method,Off- The system uses the actual value of the presen
using approximate Hessian matrix. Whens large, this variable a_”o,' Its previous N-1 values: . .
become gradient descent with a small step size tdesv The predlc'uon interval can be deC|d_ed by introdgca
method is faster and more accurate near an erfgfrtain number of delays elements in the back ldop.
minimum. so the aim is to shift towards Newton'stmoel  [@Ct: since the back loop is used to calculate efver
as quickly as possible. Thug, is decreased after eachbetween the actual yalue anq the predicted vafueei
successful step (reduction in performance functang is want the net to predict what is the value of thespnce

increased only when a tentative step would increbse yariable Miime intervalsAT in advance, it is necessary to

performance function . In this way, the performancitroduce M delays units. In this way the M-th delanit
function will always reduced at each iteration tiet 91VeS atits output the presence variable preditetime
intervals in advance and we wish this variabledahual

algorithm. ; i
to the actual presence variable. The comparisomemst
Fixed | FLR+ | Variable| VLR+ | Levemberg the;e two varial?lgs is made by thg error unit éxatutes
learnin| mom- | learning| mom- | Marquardt the_lr dlf'fer_ence. if the error is different fro_m rpethe
9 entum!| rate | entum Welg_ht_ adjuster__unlt trains the net to improve the
rate (VLR) pred|pt|on capability of the system. If the errsrgqual to
(FLR) zero it means that the system was abl_e to prdttb_cm:tual
Time 30 6.8 8.4 86 1 value of the presence value M time intervals inaambe
i and that it works well. The neural net is trained b
Train adjusting the weights and the bias of the net usiegy
cycles| 163 | 31 18 14 1 Levenberg-Marquardt algorithm expressed by eq.(8).
F]oat- It is possible to see from the comparative tabtbat the
ing used net ensures a reduced number of training gyale
point | 54 | 121 | 152 | 215 1 reduce number of floating point operations andefuee a
opera- reduced learning time with respect to the net stlidi
tions previously [9] that uses the Widrow-Hoff rule by ams of
Table 1: Comparison between the different learning equations (3) which belong to the fixed learningera
algorithms (normalized to the Levemt algorithms family.
Marquardt algorithm) From the figure 2 it is also possible to see that used

learning algorithm ensures the net to reach a ¢loba



minimum of the error whereas the net studied presho
is capable of reaching only local minimums of thee

Since the presence variable is a binary variakd¢ ¢an
assume only the values 1 or 0 and the learningifumés

check the system behavior from the switching epaint
of view.

In figure 4 the relative switching error as a fuoctof the
number L of neurons for different values of DV

sigmoidal, the output of the neuron could assumg amparameter, is shown. It is possible to see thatdlaive

value. The output variable has to control electricads
and it must assume only the value 1 or 0, as tphatin
variable: for this reason a step transfer funcisoselected
for the output neuron.

4. SYSTEM IMPLEMENTATION AND RESULTS

The basic practical implementation of this kindnet has
already been discussed [9] and it is not repeated for
brevity.

In the studied net, to ensure a high degree ofigicer it
is necessary to extend as more as possible theanushb
past input presence variables: the best resultskaened
if a 24 hour period is used as input that is al total44
inputs (24 hour multiplied 6 samples per hour).

Since the complexity of the net, related to the benof
neurons L of the first layer depends on the valitghof
the input data, that is similar input patterns neebtbw
number of neurons to be properly recognized whideyv
different input patterns (owed, for example, to agre
weather variability that produces a great varigbihif the
occupation state of the room) need a quite highbaurof
neurons to be properly recognized, it has beendntred
a parameter called “day variability” (DV) that regents

the variation degree between two subsequent days.
consists, for all the 144 samples points used lg/ th

system, in the calculation of the absolute valuethef
difference between the desired outpyiiDof the system
on the actual day and the desired outpyt, (@ of the
system on the previous day, both taken at the samgle

time i:
$h0,0)-0,.)

DV == vy 9

From the given definition it is evident that if ansidered
day is characterized by a DV equal to 1 it is tgtal
different from the previous day (the system musitcdw
on whereas in the previous day it had to switchaoitl
vice versa) while if a considered day is charazeetiby a
DV equal to zero it is exactly equal to the pregiaiay.
The DV parameter is very useful in characterizihg t
variability of the input data that greatly affectee
performance of the net and therefore its complexity
The first design parameter of the net is the numifer
neurons L that strongly influences the switchingeof
the system. It is evident that a low value of th¥ D
parameter, that means input data characterized lbwa
variability, needs a reduced number L of neuromsttie
correct working of the net, while a high value bétDV
parameter needs a elevated number of neuronsrtottea
variation features of the input data and thereforswitch
correctly the system.

Different tests on the net were made varying theer
of neuron L and the DV parameter of the input data

switching error decreases when the number of nsuton
increases.

It is also possible to see that the more the D\apater
increases (that is the variability of the input adat
increases) and the more it is necessary to incrdase
number of neurons L to obtain a given relative shiitg
error.
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Fig.4  Relative switching error as a function ok th

' number of neuron, for different values of DV
parameter.

The number of neurons L as a function of DV paramet
for different values of relative switching errorseown in
figure 5.
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Fig.5 Number of neurons L as a function of DV for

different values of relative switching error.

It is possible to see that when DV parameter irsgsa
(high variability of input data) the number of nens L
increases rapidly if a reduce switching error isicha
while it increases slowly if a greater switchingoeris
tolerated.



Another important factor to be considered is thenber It is possible to see that to obtain a reducedcivig

of floating point operations (NFPO) that must be@axed error it is necessary to increase the number dnitig

to train the net, since we wish to use a limitedlays or increase the number L of neurons, consigeri
computation resources microcontroller. It is obgidhat anyway that the curves tend to present an asymptoti
NFPO grows not only with the number of neurons £ bubehavior above a certain value.

also with the DV parameter, since a highly variahfgut It is evident that if DV increases the net neederayer
set needs a greater number of operations to erkare training period since it has to learn the variapileatures
convergence of the learning algorithm. This is ayve of the input data and vice versa.

important factor that must be considered to avdid t

microcontroller to spend the most of time in conapion 300
operations, neglecting the other controlling duties 270
In figure 6 the NFPO as a function of the number c
. . 240
neurons L, for different values of DV, is shown. 5%
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Fig.7  Number of training days as a function of the
S 2 LS s number of neurons L, for different values of
eI oy n relative switching error.
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L The proposed neural net shows a higher degree of
Fig.6 NFPO as a function of the number of neurops [flexibility in the choice of the relative switchirggror with
for different values of DV. respect to the net proposed previously [9] sinces it

possible to increase the number of neuron L tocedbe
The learning time depends on the specific micrawdier mentioned error at will, whereas the other net shaw
used and on the time necessary to execute a fippdimt  higher and unpredictable error that depends on twhic
operation (FPO): for this reason, in figure 6, distbeen local minimum of the error surface the learningoainm
indicated the NFPO so that it is possible to knowas been able to reach.
immediately the learning time when the system is
implemented on different hardware platforms>. CONCLUSIONS
characterized by a different FPO execution time.
The used net needs a certain training time befofeVversatile system, based on neural technologmanage
predicting the behavior of the presence variabdidimthe and control the energy in buildings has been ptesert
controlled room with a definite degree of precisitine is able to change and adapt its management stredetp
higher the number of neurons L and the shortethés tcontrolled environment. The advanced neural tecleniq

training period (different from the learning timdéat adopted is properly designed to be implemented lowa
depends on NFPO as explained before). computation capabilities device such a common edait
The training time also depends on the variabilitytte ~ microcontroller.

input data, related to the DV parameter accordinghe The proposed neural net has been studied intolsletai
eq.(9), that can be reduced, as usual, increasieg pbtaining some useful design parameters that allmws
number of neuron L according to the results obthine achieve the desired results as a function of theufes of
Different trainings of the net were performed toigethe the environmental where the system operates and as
minimum number of input data, which is equivalentite function of the hardware platform used.

training days in a real system, necessary to obdaim
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